Optimal. Leaf size=28 \[ \log ^2\left (\frac {4}{3 e^3 \left (5-\frac {5}{8 (5-x)}\right )^2 x^2}\right ) \]
________________________________________________________________________________________
Rubi [B] time = 1.58, antiderivative size = 203, normalized size of antiderivative = 7.25, number of steps used = 48, number of rules used = 14, integrand size = 60, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.233, Rules used = {1594, 2528, 2524, 12, 27, 2418, 2390, 2301, 2394, 2315, 2393, 2391, 2357, 2316} \begin {gather*} 4 \log \left (\frac {256 \left (x^2-10 x+25\right )}{75 e^3 \left (64 x^4-624 x^3+1521 x^2\right )}\right ) \log (x-5)-4 \log (x) \log \left (\frac {256 \left (x^2-10 x+25\right )}{75 e^3 \left (64 x^4-624 x^3+1521 x^2\right )}\right )-4 \log (8 x-39) \log \left (\frac {256 \left (x^2-10 x+25\right )}{75 e^3 \left (64 x^4-624 x^3+1521 x^2\right )}\right )-4 \log ^2(x-5)-4 \log ^2(x)-4 \log ^2(8 x-39)+8 \log \left (\frac {x}{5}\right ) \log (x-5)+8 \log (8 x-39) \log (x-5)+8 \log (5) \log (x-5)-8 \log \left (\frac {8 x}{39}\right ) \log (8 x-39)-8 \log \left (\frac {39}{8}\right ) \log (8 x-39) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 1594
Rule 2301
Rule 2315
Rule 2316
Rule 2357
Rule 2390
Rule 2391
Rule 2393
Rule 2394
Rule 2418
Rule 2524
Rule 2528
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\left (-780+320 x-32 x^2\right ) \log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{x \left (195-79 x+8 x^2\right )} \, dx\\ &=\int \left (\frac {4 \log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{-5+x}-\frac {4 \log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{x}-\frac {32 \log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{-39+8 x}\right ) \, dx\\ &=4 \int \frac {\log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{-5+x} \, dx-4 \int \frac {\log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{x} \, dx-32 \int \frac {\log \left (\frac {6400-2560 x+256 x^2}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right )}{-39+8 x} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \int \frac {e^3 \left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{6400-2560 x+256 x^2} \, dx+4 \int \frac {e^3 \left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{6400-2560 x+256 x^2} \, dx+4 \int \frac {e^3 \left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{6400-2560 x+256 x^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{6400-2560 x+256 x^2} \, dx+\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{6400-2560 x+256 x^2} \, dx+\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{6400-2560 x+256 x^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{256 (-5+x)^2} \, dx+\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{256 (-5+x)^2} \, dx+\left (4 e^3\right ) \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{256 (-5+x)^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\frac {1}{64} e^3 \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {\left (114075 x^2-46800 x^3+4800 x^4\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{(-5+x)^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\frac {1}{64} e^3 \int \frac {x^2 \left (114075-46800 x+4800 x^2\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {x^2 \left (114075-46800 x+4800 x^2\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {x^2 \left (114075-46800 x+4800 x^2\right ) \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{(-5+x)^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\frac {1}{64} e^3 \int \frac {75 x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {75 x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{(-5+x)^2} \, dx+\frac {1}{64} e^3 \int \frac {75 x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{(-5+x)^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\frac {1}{64} \left (75 e^3\right ) \int \frac {x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-5+x)}{(-5+x)^2} \, dx+\frac {1}{64} \left (75 e^3\right ) \int \frac {x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (x)}{(-5+x)^2} \, dx+\frac {1}{64} \left (75 e^3\right ) \int \frac {x^2 (-39+8 x)^2 \left (-\frac {\left (6400-2560 x+256 x^2\right ) \left (228150 x-140400 x^2+19200 x^3\right )}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )^2}+\frac {-2560+512 x}{e^3 \left (114075 x^2-46800 x^3+4800 x^4\right )}\right ) \log (-39+8 x)}{(-5+x)^2} \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-\frac {1}{64} \left (75 e^3\right ) \int \left (\frac {512 \log (-5+x)}{75 e^3 (-5+x)}-\frac {512 \log (-5+x)}{75 e^3 x}-\frac {4096 \log (-5+x)}{75 e^3 (-39+8 x)}\right ) \, dx+\frac {1}{64} \left (75 e^3\right ) \int \left (\frac {512 \log (x)}{75 e^3 (-5+x)}-\frac {512 \log (x)}{75 e^3 x}-\frac {4096 \log (x)}{75 e^3 (-39+8 x)}\right ) \, dx+\frac {1}{64} \left (75 e^3\right ) \int \left (\frac {512 \log (-39+8 x)}{75 e^3 (-5+x)}-\frac {512 \log (-39+8 x)}{75 e^3 x}-\frac {4096 \log (-39+8 x)}{75 e^3 (-39+8 x)}\right ) \, dx\\ &=4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-8 \int \frac {\log (-5+x)}{-5+x} \, dx+8 \int \frac {\log (-5+x)}{x} \, dx+8 \int \frac {\log (x)}{-5+x} \, dx-8 \int \frac {\log (x)}{x} \, dx+8 \int \frac {\log (-39+8 x)}{-5+x} \, dx-8 \int \frac {\log (-39+8 x)}{x} \, dx+64 \int \frac {\log (-5+x)}{-39+8 x} \, dx-64 \int \frac {\log (x)}{-39+8 x} \, dx-64 \int \frac {\log (-39+8 x)}{-39+8 x} \, dx\\ &=8 \log (5) \log (-5+x)+8 \log (-5+x) \log \left (\frac {x}{5}\right )-4 \log ^2(x)-8 \log \left (\frac {39}{8}\right ) \log (-39+8 x)+8 \log (-5+x) \log (-39+8 x)-8 \log \left (\frac {8 x}{39}\right ) \log (-39+8 x)+4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-8 \int \frac {\log (-39+8 x)}{-5+x} \, dx-8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-5+x\right )-8 \operatorname {Subst}\left (\int \frac {\log (x)}{x} \, dx,x,-39+8 x\right )+8 \operatorname {Subst}\left (\int \frac {\log (1+8 x)}{x} \, dx,x,-5+x\right )\\ &=8 \log (5) \log (-5+x)-4 \log ^2(-5+x)+8 \log (-5+x) \log \left (\frac {x}{5}\right )-4 \log ^2(x)-8 \log \left (\frac {39}{8}\right ) \log (-39+8 x)+8 \log (-5+x) \log (-39+8 x)-8 \log \left (\frac {8 x}{39}\right ) \log (-39+8 x)-4 \log ^2(-39+8 x)+4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-8 \text {Li}_2(8 (5-x))-8 \operatorname {Subst}\left (\int \frac {\log (1+8 x)}{x} \, dx,x,-5+x\right )\\ &=8 \log (5) \log (-5+x)-4 \log ^2(-5+x)+8 \log (-5+x) \log \left (\frac {x}{5}\right )-4 \log ^2(x)-8 \log \left (\frac {39}{8}\right ) \log (-39+8 x)+8 \log (-5+x) \log (-39+8 x)-8 \log \left (\frac {8 x}{39}\right ) \log (-39+8 x)-4 \log ^2(-39+8 x)+4 \log (-5+x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )-4 \log (-39+8 x) \log \left (\frac {256 \left (25-10 x+x^2\right )}{75 e^3 \left (1521 x^2-624 x^3+64 x^4\right )}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [C] time = 0.09, size = 197, normalized size = 7.04 \begin {gather*} -4 \left (\log ^2(5-x)-2 \log (5) \log (-5+x)-2 \log (5) \log (x)+\log ^2(x)-\log (5-x) \left (-3+\log \left (\frac {256}{75}\right )+\log \left (\frac {(-5+x)^2}{x^2 (-39+8 x)^2}\right )\right )+\log (x) \left (-3+\log \left (\frac {256}{75}\right )+\log \left (\frac {(-5+x)^2}{x^2 (-39+8 x)^2}\right )\right )+2 \log \left (\frac {39}{8}\right ) \log (-39+8 x)+\log (64) \log (-39+8 x)+2 \log \left (\frac {8 x}{39}\right ) \log (-39+8 x)+\left (-3+\log \left (\frac {256}{75}\right )+\log \left (\frac {(-5+x)^2}{x^2 (-39+8 x)^2}\right )\right ) \log (-39+8 x)+\log ^2(-39+8 x)+2 \text {Li}_2(40-8 x)+2 \text {Li}_2\left (1-\frac {x}{5}\right )+2 \text {Li}_2\left (\frac {x}{5}\right )+2 \text {Li}_2(-39+8 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 33, normalized size = 1.18 \begin {gather*} \log \left (\frac {256 \, {\left (x^{2} - 10 \, x + 25\right )} e^{\left (-3\right )}}{75 \, {\left (64 \, x^{4} - 624 \, x^{3} + 1521 \, x^{2}\right )}}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {4 \, {\left (8 \, x^{2} - 80 \, x + 195\right )} \log \left (\frac {256 \, {\left (x^{2} - 10 \, x + 25\right )} e^{\left (-3\right )}}{75 \, {\left (64 \, x^{4} - 624 \, x^{3} + 1521 \, x^{2}\right )}}\right )}{8 \, x^{3} - 79 \, x^{2} + 195 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.22, size = 37, normalized size = 1.32
method | result | size |
norman | \(\ln \left (\frac {\left (256 x^{2}-2560 x +6400\right ) {\mathrm e}^{-3}}{4800 x^{4}-46800 x^{3}+114075 x^{2}}\right )^{2}\) | \(37\) |
risch | \(-4 \ln \relax (x ) \ln \left (\frac {\left (x^{2}-10 x +25\right ) {\mathrm e}^{-3}}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )+8 \ln \left (-\frac {8 x}{39}+1\right ) \ln \left (\frac {8 x}{39}\right )-8 \ln \left (-\frac {8 x}{39}+1\right ) \ln \relax (x )-8 \ln \left (1-\frac {x}{5}\right ) \ln \left (\frac {x}{5}\right )+8 \ln \left (1-\frac {x}{5}\right ) \ln \relax (x )-4 \ln \relax (x )^{2}-4 \ln \left (8 x -39\right ) \ln \left (\frac {\left (x^{2}-10 x +25\right ) {\mathrm e}^{-3}}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )-4 \ln \left (8 x -39\right )^{2}-8 \ln \left (8 x -39\right ) \ln \left (\frac {8 x}{39}\right )+4 \ln \left (x -5\right ) \ln \left (\frac {\left (x^{2}-10 x +25\right ) {\mathrm e}^{-3}}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )+8 \ln \left (x -5\right ) \ln \left (\frac {x}{5}\right )-4 \ln \left (x -5\right )^{2}+8 \ln \left (x -5\right ) \ln \left (8 x -39\right )-32 \ln \relax (2) \ln \left (8 x -39\right )+32 \ln \relax (2) \ln \left (x -5\right )-32 \ln \relax (2) \ln \relax (x )+4 \ln \left (75\right ) \ln \left (8 x -39\right )-4 \ln \left (75\right ) \ln \left (x -5\right )+4 \ln \left (75\right ) \ln \relax (x )\) | \(251\) |
default | \(-4 \ln \left (75\right ) \ln \left (x -5\right )+4 \ln \left (75\right ) \ln \relax (x )+4 \ln \left (75\right ) \ln \left (8 x -39\right )+12 \ln \relax (x )+12 \ln \left (8 x -39\right )-12 \ln \left (x -5\right )+32 \ln \relax (2) \ln \left (x -5\right )-32 \ln \relax (2) \ln \relax (x )-32 \ln \relax (2) \ln \left (8 x -39\right )-4 \ln \relax (x ) \ln \left (\frac {x^{2}-10 x +25}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )-4 \ln \relax (x )^{2}-8 \left (\ln \relax (x )-\ln \left (\frac {8 x}{39}\right )\right ) \ln \left (-\frac {8 x}{39}+1\right )+8 \left (\ln \relax (x )-\ln \left (\frac {x}{5}\right )\right ) \ln \left (1-\frac {x}{5}\right )-4 \ln \left (8 x -39\right ) \ln \left (\frac {x^{2}-10 x +25}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )-4 \ln \left (8 x -39\right )^{2}-8 \ln \left (8 x -39\right ) \ln \left (\frac {8 x}{39}\right )+4 \ln \left (x -5\right ) \ln \left (\frac {x^{2}-10 x +25}{x^{2} \left (64 x^{2}-624 x +1521\right )}\right )+8 \ln \left (x -5\right ) \ln \left (\frac {x}{5}\right )-4 \ln \left (x -5\right )^{2}+8 \ln \left (x -5\right ) \ln \left (8 x -39\right )\) | \(253\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.36, size = 98, normalized size = 3.50 \begin {gather*} 8 \, {\left (\log \left (x - 5\right ) - \log \relax (x)\right )} \log \left (8 \, x - 39\right ) - 4 \, \log \left (8 \, x - 39\right )^{2} - 4 \, \log \left (x - 5\right )^{2} + 8 \, \log \left (x - 5\right ) \log \relax (x) - 4 \, \log \relax (x)^{2} - 4 \, {\left (\log \left (8 \, x - 39\right ) - \log \left (x - 5\right ) + \log \relax (x)\right )} \log \left (\frac {256 \, {\left (x^{2} - 10 \, x + 25\right )} e^{\left (-3\right )}}{75 \, {\left (64 \, x^{4} - 624 \, x^{3} + 1521 \, x^{2}\right )}}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.07, size = 34, normalized size = 1.21 \begin {gather*} {\left (\ln \left (\frac {256\,x^2-2560\,x+6400}{4800\,x^4-46800\,x^3+114075\,x^2}\right )-3\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 31, normalized size = 1.11 \begin {gather*} \log {\left (\frac {256 x^{2} - 2560 x + 6400}{\left (4800 x^{4} - 46800 x^{3} + 114075 x^{2}\right ) e^{3}} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________