Optimal. Leaf size=16 \[ 16 x^4 \log ^2(-4+x-\log (\log (x))) \]
________________________________________________________________________________________
Rubi [F] time = 1.12, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\left (32 x^3-32 x^4 \log (x)\right ) \log (-4+x-\log (\log (x)))+\left (\left (256 x^3-64 x^4\right ) \log (x)+64 x^3 \log (x) \log (\log (x))\right ) \log ^2(-4+x-\log (\log (x)))}{(4-x) \log (x)+\log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 x^3 \log (-4+x-\log (\log (x))) (1-\log (x) (x+2 (-4+x-\log (\log (x))) \log (-4+x-\log (\log (x)))))}{\log (x) (4-x+\log (\log (x)))} \, dx\\ &=32 \int \frac {x^3 \log (-4+x-\log (\log (x))) (1-\log (x) (x+2 (-4+x-\log (\log (x))) \log (-4+x-\log (\log (x)))))}{\log (x) (4-x+\log (\log (x)))} \, dx\\ &=32 \int \left (\frac {x^3 (-1+x \log (x)) \log (-4+x-\log (\log (x)))}{\log (x) (-4+x-\log (\log (x)))}+2 x^3 \log ^2(-4+x-\log (\log (x)))\right ) \, dx\\ &=32 \int \frac {x^3 (-1+x \log (x)) \log (-4+x-\log (\log (x)))}{\log (x) (-4+x-\log (\log (x)))} \, dx+64 \int x^3 \log ^2(-4+x-\log (\log (x))) \, dx\\ &=32 \int \left (\frac {x^4 \log (-4+x-\log (\log (x)))}{-4+x-\log (\log (x))}-\frac {x^3 \log (-4+x-\log (\log (x)))}{\log (x) (-4+x-\log (\log (x)))}\right ) \, dx+64 \int x^3 \log ^2(-4+x-\log (\log (x))) \, dx\\ &=32 \int \frac {x^4 \log (-4+x-\log (\log (x)))}{-4+x-\log (\log (x))} \, dx-32 \int \frac {x^3 \log (-4+x-\log (\log (x)))}{\log (x) (-4+x-\log (\log (x)))} \, dx+64 \int x^3 \log ^2(-4+x-\log (\log (x))) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.64, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (32 x^3-32 x^4 \log (x)\right ) \log (-4+x-\log (\log (x)))+\left (\left (256 x^3-64 x^4\right ) \log (x)+64 x^3 \log (x) \log (\log (x))\right ) \log ^2(-4+x-\log (\log (x)))}{(4-x) \log (x)+\log (x) \log (\log (x))} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 16, normalized size = 1.00 \begin {gather*} 16 \, x^{4} \log \left (x - \log \left (\log \relax (x)\right ) - 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 17, normalized size = 1.06
method | result | size |
risch | \(16 x^{4} \ln \left (-\ln \left (\ln \relax (x )\right )+x -4\right )^{2}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 16, normalized size = 1.00 \begin {gather*} 16 \, x^{4} \log \left (x - \log \left (\log \relax (x)\right ) - 4\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.92, size = 16, normalized size = 1.00 \begin {gather*} 16\,x^4\,{\ln \left (x-\ln \left (\ln \relax (x)\right )-4\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.95, size = 15, normalized size = 0.94 \begin {gather*} 16 x^{4} \log {\left (x - \log {\left (\log {\relax (x )} \right )} - 4 \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________