Optimal. Leaf size=38 \[ \frac {1}{4} x \left (x+\frac {x^2}{\left (-e^{-e^x+e^{(2-x) x}}+\frac {x}{e^2}\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 22.71, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 e^{6-3 e^x+3 e^{2 x-x^2}} x-6 e^{4-2 e^x+2 e^{2 x-x^2}} x^2-e^4 x^3-2 x^4+e^{-e^x+e^{2 x-x^2}} \left (3 e^6 x^2+6 e^2 x^3+2 e^{6+x} x^3+e^{6+2 x-x^2} \left (-4 x^3+4 x^4\right )\right )}{4 e^{6-3 e^x+3 e^{2 x-x^2}}-12 e^{4-2 e^x+2 e^{2 x-x^2}} x+12 e^{2-e^x+e^{2 x-x^2}} x^2-4 x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{3 e^x} \left (2 e^{6-3 e^x+3 e^{2 x-x^2}} x-6 e^{4-2 e^x+2 e^{2 x-x^2}} x^2-e^4 x^3-2 x^4+e^{-e^x+e^{2 x-x^2}} \left (3 e^6 x^2+6 e^2 x^3+2 e^{6+x} x^3+e^{6+2 x-x^2} \left (-4 x^3+4 x^4\right )\right )\right )}{4 \left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\\ &=\frac {1}{4} \int \frac {e^{3 e^x} \left (2 e^{6-3 e^x+3 e^{2 x-x^2}} x-6 e^{4-2 e^x+2 e^{2 x-x^2}} x^2-e^4 x^3-2 x^4+e^{-e^x+e^{2 x-x^2}} \left (3 e^6 x^2+6 e^2 x^3+2 e^{6+x} x^3+e^{6+2 x-x^2} \left (-4 x^3+4 x^4\right )\right )\right )}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\\ &=\frac {1}{4} \int \left (\frac {2 e^{6+3 e^{-((-2+x) x)}} x}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}+\frac {3 e^{6+2 e^x+e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}-\frac {6 e^{4+e^x+2 e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}-\frac {e^{4+3 e^x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}+\frac {6 e^{2+2 e^x+e^{-((-2+x) x)}} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}+\frac {2 e^{6+2 e^x+e^{-((-2+x) x)}+x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}+\frac {4 e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} (-1+x) x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3}+\frac {2 e^{3 e^x} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{4+3 e^x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\right )+\frac {1}{2} \int \frac {e^{6+3 e^{-((-2+x) x)}} x}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{3 e^x} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3} \, dx+\frac {3}{4} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx-\frac {3}{2} \int \frac {e^{4+e^x+2 e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {3}{2} \int \frac {e^{2+2 e^x+e^{-((-2+x) x)}} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} (-1+x) x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{4+3 e^x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\right )+\frac {1}{2} \int \frac {e^{6+3 e^{-((-2+x) x)}} x}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{3 e^x} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3} \, dx+\frac {3}{4} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx-\frac {3}{2} \int \frac {e^{4+e^x+2 e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {3}{2} \int \frac {e^{2+2 e^x+e^{-((-2+x) x)}} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\int \left (\frac {e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} x^3}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3}-\frac {e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3}\right ) \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{4+3 e^x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx\right )+\frac {1}{2} \int \frac {e^{6+3 e^{-((-2+x) x)}} x}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {1}{2} \int \frac {e^{3 e^x} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3} \, dx+\frac {3}{4} \int \frac {e^{6+2 e^x+e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx-\frac {3}{2} \int \frac {e^{4+e^x+2 e^{-((-2+x) x)}} x^2}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\frac {3}{2} \int \frac {e^{2+2 e^x+e^{-((-2+x) x)}} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^3} \, dx+\int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} x^3}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3} \, dx-\int \frac {e^{6+2 e^x+e^{-((-2+x) x)}+2 x-x^2} x^4}{\left (-e^{2+e^{-((-2+x) x)}}+e^{e^x} x\right )^3} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.49, size = 44, normalized size = 1.16 \begin {gather*} \frac {1}{4} \left (x^2+\frac {e^{4+2 e^x} x^3}{\left (e^{2+e^{-((-2+x) x)}}-e^{e^x} x\right )^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.59, size = 136, normalized size = 3.58 \begin {gather*} \frac {x^{4} + x^{3} e^{4} - 2 \, x^{3} e^{\left ({\left (2 \, e^{6} + e^{\left (-x^{2} + 2 \, x + 6\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )}\right )} + x^{2} e^{\left (2 \, {\left (2 \, e^{6} + e^{\left (-x^{2} + 2 \, x + 6\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )}\right )}}{4 \, {\left (x^{2} - 2 \, x e^{\left ({\left (2 \, e^{6} + e^{\left (-x^{2} + 2 \, x + 6\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )}\right )} + e^{\left (2 \, {\left (2 \, e^{6} + e^{\left (-x^{2} + 2 \, x + 6\right )} - e^{\left (x + 6\right )}\right )} e^{\left (-6\right )}\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 34, normalized size = 0.89
method | result | size |
risch | \(\frac {x^{2}}{4}+\frac {x^{3} {\mathrm e}^{4}}{4 \left ({\mathrm e}^{-{\mathrm e}^{x}+{\mathrm e}^{-\left (x -2\right ) x}+2}-x \right )^{2}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.52, size = 105, normalized size = 2.76 \begin {gather*} -\frac {2 \, x^{3} e^{\left (e^{\left (-x^{2} + 2 \, x\right )} + e^{x} + 2\right )} - x^{2} e^{\left (2 \, e^{\left (-x^{2} + 2 \, x\right )} + 4\right )} - {\left (x^{4} + x^{3} e^{4}\right )} e^{\left (2 \, e^{x}\right )}}{4 \, {\left (x^{2} e^{\left (2 \, e^{x}\right )} - 2 \, x e^{\left (e^{\left (-x^{2} + 2 \, x\right )} + e^{x} + 2\right )} + e^{\left (2 \, e^{\left (-x^{2} + 2 \, x\right )} + 4\right )}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 102, normalized size = 2.68 \begin {gather*} \frac {x^2\,\left (x+{\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-x^2}-2\,{\mathrm {e}}^x}-2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-x^2}-{\mathrm {e}}^x-2}+x^2\,{\mathrm {e}}^{-4}\right )}{4\,\left ({\mathrm {e}}^{2\,{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-x^2}-2\,{\mathrm {e}}^x}-2\,x\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}\,{\mathrm {e}}^{-x^2}-{\mathrm {e}}^x-2}+x^2\,{\mathrm {e}}^{-4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.37, size = 58, normalized size = 1.53 \begin {gather*} \frac {x^{3} e^{4}}{4 x^{2} - 8 x e^{2} e^{- e^{x} + e^{- x^{2} + 2 x}} + 4 e^{4} e^{- 2 e^{x} + 2 e^{- x^{2} + 2 x}}} + \frac {x^{2}}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________