Optimal. Leaf size=22 \[ -3+5 \log (3)-\left (x-2 e^{-125/x} x\right ) \log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.35, antiderivative size = 18, normalized size of antiderivative = 0.82, number of steps used = 8, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {6688, 2206, 2210, 2288, 2554} \begin {gather*} 2 e^{-125/x} x \log (x)-x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2206
Rule 2210
Rule 2288
Rule 2554
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+2 e^{-125/x}+\left (-1+\frac {2 e^{-125/x} (125+x)}{x}\right ) \log (x)\right ) \, dx\\ &=-x+2 \int e^{-125/x} \, dx+\int \left (-1+\frac {2 e^{-125/x} (125+x)}{x}\right ) \log (x) \, dx\\ &=-x+2 e^{-125/x} x-x \log (x)+2 e^{-125/x} x \log (x)-250 \int \frac {e^{-125/x}}{x} \, dx-\int \left (-1+2 e^{-125/x}\right ) \, dx\\ &=2 e^{-125/x} x+250 \text {Ei}\left (-\frac {125}{x}\right )-x \log (x)+2 e^{-125/x} x \log (x)-2 \int e^{-125/x} \, dx\\ &=250 \text {Ei}\left (-\frac {125}{x}\right )-x \log (x)+2 e^{-125/x} x \log (x)+250 \int \frac {e^{-125/x}}{x} \, dx\\ &=-x \log (x)+2 e^{-125/x} x \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 15, normalized size = 0.68 \begin {gather*} \left (-1+2 e^{-125/x}\right ) x \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.67, size = 22, normalized size = 1.00 \begin {gather*} -{\left (x e^{\frac {125}{x}} - 2 \, x\right )} e^{\left (-\frac {125}{x}\right )} \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.30, size = 17, normalized size = 0.77 \begin {gather*} 2 \, x e^{\left (-\frac {125}{x}\right )} \log \relax (x) - x \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.91
method | result | size |
default | \(2 \ln \relax (x ) x \,{\mathrm e}^{-\frac {125}{x}}-x \ln \relax (x )\) | \(20\) |
risch | \(-x \left ({\mathrm e}^{\frac {125}{x}}-2\right ) {\mathrm e}^{-\frac {125}{x}} \ln \relax (x )\) | \(20\) |
norman | \(\left (2 x \ln \relax (x )-\ln \relax (x ) {\mathrm e}^{\frac {125}{x}} x \right ) {\mathrm e}^{-\frac {125}{x}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, x e^{\left (-\frac {125}{x}\right )} \log \relax (x) - x \log \relax (x) + 250 \, \Gamma \left (-1, \frac {125}{x}\right ) - 2 \, \int e^{\left (-\frac {125}{x}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.33, size = 14, normalized size = 0.64 \begin {gather*} x\,\ln \relax (x)\,\left (2\,{\mathrm {e}}^{-\frac {125}{x}}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 15, normalized size = 0.68 \begin {gather*} - x \log {\relax (x )} + 2 x e^{- \frac {125}{x}} \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________