Optimal. Leaf size=27 \[ 3 \left (1+e^{3+\frac {x^2}{\frac {1}{625}+\frac {2}{x}}}-\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.03, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-4687500-7500 x-3 x^2+e^{\frac {3750+3 x+625 x^3}{1250+x}} \left (7031250 x^3+3750 x^4\right )}{1562500 x+2500 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4687500-7500 x-3 x^2+e^{\frac {3750+3 x+625 x^3}{1250+x}} \left (7031250 x^3+3750 x^4\right )}{x \left (1562500+2500 x+x^2\right )} \, dx\\ &=\int \frac {-4687500-7500 x-3 x^2+e^{\frac {3750+3 x+625 x^3}{1250+x}} \left (7031250 x^3+3750 x^4\right )}{x (1250+x)^2} \, dx\\ &=\int \left (-\frac {3}{x}+\frac {3750 e^{\frac {3750+3 x+625 x^3}{1250+x}} x^2 (1875+x)}{(1250+x)^2}\right ) \, dx\\ &=-3 \log (x)+3750 \int \frac {e^{\frac {3750+3 x+625 x^3}{1250+x}} x^2 (1875+x)}{(1250+x)^2} \, dx\\ &=-3 \log (x)+3750 \int \left (-625 e^{\frac {3750+3 x+625 x^3}{1250+x}}+e^{\frac {3750+3 x+625 x^3}{1250+x}} x+\frac {976562500 e^{\frac {3750+3 x+625 x^3}{1250+x}}}{(1250+x)^2}\right ) \, dx\\ &=-3 \log (x)+3750 \int e^{\frac {3750+3 x+625 x^3}{1250+x}} x \, dx-2343750 \int e^{\frac {3750+3 x+625 x^3}{1250+x}} \, dx+3662109375000 \int \frac {e^{\frac {3750+3 x+625 x^3}{1250+x}}}{(1250+x)^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.25, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-4687500-7500 x-3 x^2+e^{\frac {3750+3 x+625 x^3}{1250+x}} \left (7031250 x^3+3750 x^4\right )}{1562500 x+2500 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 24, normalized size = 0.89 \begin {gather*} 3 \, e^{\left (\frac {625 \, x^{3} + 3 \, x + 3750}{x + 1250}\right )} - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 20, normalized size = 0.74 \begin {gather*} 3 \, e^{\left (\frac {625 \, x^{3}}{x + 1250} + 3\right )} - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 49.17, size = 25, normalized size = 0.93
method | result | size |
risch | \(-3 \ln \relax (x )+3 \,{\mathrm e}^{\frac {625 x^{3}+3 x +3750}{x +1250}}\) | \(25\) |
norman | \(\frac {3 x \,{\mathrm e}^{\frac {625 x^{3}+3 x +3750}{x +1250}}+3750 \,{\mathrm e}^{\frac {625 x^{3}+3 x +3750}{x +1250}}}{x +1250}-3 \ln \relax (x )\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 25, normalized size = 0.93 \begin {gather*} 3 \, e^{\left (625 \, x^{2} - 781250 \, x - \frac {1220703125000}{x + 1250} + 976562503\right )} - 3 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.15, size = 35, normalized size = 1.30 \begin {gather*} 3\,{\mathrm {e}}^{\frac {3\,x}{x+1250}}\,{\mathrm {e}}^{\frac {625\,x^3}{x+1250}}\,{\mathrm {e}}^{\frac {3750}{x+1250}}-3\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 20, normalized size = 0.74 \begin {gather*} 3 e^{\frac {625 x^{3} + 3 x + 3750}{x + 1250}} - 3 \log {\relax (x )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________