Optimal. Leaf size=19 \[ -2+\frac {2 e^{20} x^2}{3 (13-x)^4} \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 17, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 4, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.100, Rules used = {12, 1593, 6688, 74} \begin {gather*} \frac {2 e^{20} x^2}{3 (13-x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 74
Rule 1593
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=e^{20} \int \frac {-52 x-4 x^2}{-1113879+428415 x-65910 x^2+5070 x^3-195 x^4+3 x^5} \, dx\\ &=e^{20} \int \frac {(-52-4 x) x}{-1113879+428415 x-65910 x^2+5070 x^3-195 x^4+3 x^5} \, dx\\ &=e^{20} \int \frac {4 x (13+x)}{3 (13-x)^5} \, dx\\ &=\frac {1}{3} \left (4 e^{20}\right ) \int \frac {x (13+x)}{(13-x)^5} \, dx\\ &=\frac {2 e^{20} x^2}{3 (13-x)^4}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 15, normalized size = 0.79 \begin {gather*} \frac {2 e^{20} x^2}{3 (-13+x)^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 27, normalized size = 1.42 \begin {gather*} \frac {2 \, x^{2} e^{20}}{3 \, {\left (x^{4} - 52 \, x^{3} + 1014 \, x^{2} - 8788 \, x + 28561\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 12, normalized size = 0.63 \begin {gather*} \frac {2 \, x^{2} e^{20}}{3 \, {\left (x - 13\right )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.79
method | result | size |
norman | \(\frac {2 x^{2} {\mathrm e}^{20}}{3 \left (x -13\right )^{4}}\) | \(15\) |
risch | \(\frac {2 x^{2} {\mathrm e}^{20}}{3 \left (x^{4}-52 x^{3}+1014 x^{2}-8788 x +28561\right )}\) | \(28\) |
default | \(\frac {4 \,{\mathrm e}^{20} \left (\frac {13}{\left (x -13\right )^{3}}+\frac {169}{2 \left (x -13\right )^{4}}+\frac {1}{2 \left (x -13\right )^{2}}\right )}{3}\) | \(29\) |
gosper | \(\frac {2 x^{2} {\mathrm e}^{20}}{3 \left (x^{4}-52 x^{3}+1014 x^{2}-8788 x +28561\right )}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 27, normalized size = 1.42 \begin {gather*} \frac {2 \, x^{2} e^{20}}{3 \, {\left (x^{4} - 52 \, x^{3} + 1014 \, x^{2} - 8788 \, x + 28561\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.23, size = 28, normalized size = 1.47 \begin {gather*} \frac {2\,{\mathrm {e}}^{20}}{3\,{\left (x-13\right )}^2}+\frac {52\,{\mathrm {e}}^{20}}{3\,{\left (x-13\right )}^3}+\frac {338\,{\mathrm {e}}^{20}}{3\,{\left (x-13\right )}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 27, normalized size = 1.42 \begin {gather*} \frac {2 x^{2} e^{20}}{3 x^{4} - 156 x^{3} + 3042 x^{2} - 26364 x + 85683} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________