Optimal. Leaf size=24 \[ e^{\left (-33+e^x-x\right )^2}+\frac {3+x}{-2+2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.81, antiderivative size = 22, normalized size of antiderivative = 0.92, number of steps used = 4, number of rules used = 3, integrand size = 88, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {27, 6688, 6706} \begin {gather*} e^{\left (x-e^x+33\right )^2}-\frac {2}{1-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 6688
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-2+e^{1089+e^{2 x}+e^x (-66-2 x)+66 x+x^2} \left (66-130 x+62 x^2+2 x^3+e^{2 x} \left (2-4 x+2 x^2\right )+e^x \left (-68+134 x-64 x^2-2 x^3\right )\right )}{(-1+x)^2} \, dx\\ &=\int \left (2 e^{\left (33-e^x+x\right )^2} \left (-1+e^x\right ) \left (-33+e^x-x\right )-\frac {2}{(-1+x)^2}\right ) \, dx\\ &=-\frac {2}{1-x}+2 \int e^{\left (33-e^x+x\right )^2} \left (-1+e^x\right ) \left (-33+e^x-x\right ) \, dx\\ &=e^{\left (33-e^x+x\right )^2}-\frac {2}{1-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.33, size = 31, normalized size = 1.29 \begin {gather*} e^{1089+e^{2 x}+66 x+x^2-2 e^x (33+x)}+\frac {2}{-1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 32, normalized size = 1.33 \begin {gather*} \frac {{\left (x - 1\right )} e^{\left (x^{2} - 2 \, {\left (x + 33\right )} e^{x} + 66 \, x + e^{\left (2 \, x\right )} + 1089\right )} + 2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.29, size = 56, normalized size = 2.33 \begin {gather*} \frac {x e^{\left (x^{2} - 2 \, x e^{x} + 66 \, x + e^{\left (2 \, x\right )} - 66 \, e^{x} + 1089\right )} - e^{\left (x^{2} - 2 \, x e^{x} + 66 \, x + e^{\left (2 \, x\right )} - 66 \, e^{x} + 1089\right )} + 2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.39, size = 31, normalized size = 1.29
method | result | size |
risch | \(\frac {2}{x -1}+{\mathrm e}^{-2 \,{\mathrm e}^{x} x +x^{2}-66 \,{\mathrm e}^{x}+{\mathrm e}^{2 x}+66 x +1089}\) | \(31\) |
norman | \(\frac {x \,{\mathrm e}^{{\mathrm e}^{2 x}+\left (-2 x -66\right ) {\mathrm e}^{x}+x^{2}+66 x +1089}-{\mathrm e}^{{\mathrm e}^{2 x}+\left (-2 x -66\right ) {\mathrm e}^{x}+x^{2}+66 x +1089}+2}{x -1}\) | \(55\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 3.24, size = 30, normalized size = 1.25 \begin {gather*} \frac {2}{x - 1} + e^{\left (x^{2} - 2 \, x e^{x} + 66 \, x + e^{\left (2 \, x\right )} - 66 \, e^{x} + 1089\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 35, normalized size = 1.46 \begin {gather*} \frac {2}{x-1}+{\mathrm {e}}^{-2\,x\,{\mathrm {e}}^x}\,{\mathrm {e}}^{66\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{1089}\,{\mathrm {e}}^{{\mathrm {e}}^{2\,x}}\,{\mathrm {e}}^{-66\,{\mathrm {e}}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 29, normalized size = 1.21 \begin {gather*} e^{x^{2} + 66 x + \left (- 2 x - 66\right ) e^{x} + e^{2 x} + 1089} + \frac {2}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________