Optimal. Leaf size=28 \[ x^3 \left (e+\frac {x \log (2)}{-e^3+\log \left (-x+3 x^2\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.55, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^7 \left (-3 x^2+9 x^3\right )+\left (x^3-6 x^4+e^3 \left (4 x^3-12 x^4\right )\right ) \log (2)+\left (e^4 \left (6 x^2-18 x^3\right )+\left (-4 x^3+12 x^4\right ) \log (2)\right ) \log \left (-x+3 x^2\right )+e \left (-3 x^2+9 x^3\right ) \log ^2\left (-x+3 x^2\right )}{e^6 (-1+3 x)+e^3 (2-6 x) \log \left (-x+3 x^2\right )+(-1+3 x) \log ^2\left (-x+3 x^2\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x^2 \left (-e^7 (-3+9 x)-(1-6 x) x \log (2)-e^3 x (-12 x \log (2)+\log (16))-2 (-1+3 x) \left (-3 e^4+x \log (4)\right ) \log (x (-1+3 x))-3 e (-1+3 x) \log ^2(x (-1+3 x))\right )}{(1-3 x) \left (e^3-\log (x (-1+3 x))\right )^2} \, dx\\ &=\int \left (3 e x^2-\frac {x^3 (-\log (2)+x \log (64))}{(-1+3 x) \left (e^3-\log (x (-1+3 x))\right )^2}-\frac {2 x^3 \log (4)}{e^3-\log (x (-1+3 x))}\right ) \, dx\\ &=e x^3-(2 \log (4)) \int \frac {x^3}{e^3-\log (x (-1+3 x))} \, dx-\int \frac {x^3 (-\log (2)+x \log (64))}{(-1+3 x) \left (e^3-\log (x (-1+3 x))\right )^2} \, dx\\ &=e x^3-(2 \log (4)) \int \frac {x^3}{e^3-\log (x (-1+3 x))} \, dx-\int \left (\frac {\log (8)}{81 \left (e^3-\log (x (-1+3 x))\right )^2}+\frac {x \log (8)}{27 \left (e^3-\log (x (-1+3 x))\right )^2}+\frac {x^2 \log (8)}{9 \left (e^3-\log (x (-1+3 x))\right )^2}+\frac {\log (8)}{81 (-1+3 x) \left (e^3-\log (x (-1+3 x))\right )^2}+\frac {x^3 \log (64)}{3 \left (e^3-\log (x (-1+3 x))\right )^2}\right ) \, dx\\ &=e x^3-(2 \log (4)) \int \frac {x^3}{e^3-\log (x (-1+3 x))} \, dx-\frac {1}{81} \log (8) \int \frac {1}{\left (e^3-\log (x (-1+3 x))\right )^2} \, dx-\frac {1}{81} \log (8) \int \frac {1}{(-1+3 x) \left (e^3-\log (x (-1+3 x))\right )^2} \, dx-\frac {1}{27} \log (8) \int \frac {x}{\left (e^3-\log (x (-1+3 x))\right )^2} \, dx-\frac {1}{9} \log (8) \int \frac {x^2}{\left (e^3-\log (x (-1+3 x))\right )^2} \, dx-\frac {1}{3} \log (64) \int \frac {x^3}{\left (e^3-\log (x (-1+3 x))\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.11, size = 62, normalized size = 2.21 \begin {gather*} \frac {x^3 \left (e^4 (-1+6 x)+x (\log (2)-x \log (64))+(e-6 e x) \log (x (-1+3 x))\right )}{(-1+6 x) \left (e^3-\log (x (-1+3 x))\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 49, normalized size = 1.75 \begin {gather*} -\frac {x^{4} \log \relax (2) + x^{3} e \log \left (3 \, x^{2} - x\right ) - x^{3} e^{4}}{e^{3} - \log \left (3 \, x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 49, normalized size = 1.75 \begin {gather*} -\frac {x^{4} \log \relax (2) + x^{3} e \log \left (3 \, x^{2} - x\right ) - x^{3} e^{4}}{e^{3} - \log \left (3 \, x^{2} - x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.35, size = 32, normalized size = 1.14
method | result | size |
default | \(x^{3} {\mathrm e}-\frac {x^{4} \ln \relax (2)}{{\mathrm e}^{3}-\ln \left (3 x^{2}-x \right )}\) | \(32\) |
risch | \(x^{3} {\mathrm e}-\frac {x^{4} \ln \relax (2)}{{\mathrm e}^{3}-\ln \left (3 x^{2}-x \right )}\) | \(32\) |
norman | \(\frac {{\mathrm e} \,{\mathrm e}^{3} x^{3}-x^{4} \ln \relax (2)-x^{3} {\mathrm e} \ln \left (3 x^{2}-x \right )}{{\mathrm e}^{3}-\ln \left (3 x^{2}-x \right )}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 53, normalized size = 1.89 \begin {gather*} -\frac {x^{4} \log \relax (2) + x^{3} e \log \left (3 \, x - 1\right ) + x^{3} e \log \relax (x) - x^{3} e^{4}}{e^{3} - \log \left (3 \, x - 1\right ) - \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.01, size = 129, normalized size = 4.61 \begin {gather*} \frac {\frac {x^3\,\left (x\,\ln \relax (2)-6\,x^2\,\ln \relax (2)-12\,x^2\,{\mathrm {e}}^3\,\ln \relax (2)+4\,x\,{\mathrm {e}}^3\,\ln \relax (2)\right )}{6\,x-1}+\frac {4\,x^4\,\ln \relax (2)\,\ln \left (3\,x^2-x\right )\,\left (3\,x-1\right )}{6\,x-1}}{{\mathrm {e}}^3-\ln \left (3\,x^2-x\right )}-\frac {x\,\ln \relax (2)}{108}-\frac {\ln \relax (2)}{6\,\left (648\,x-108\right )}-\frac {x^2\,\ln \relax (2)}{18}+2\,x^4\,\ln \relax (2)+x^3\,\left (\mathrm {e}-\frac {\ln \relax (2)}{3}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.21, size = 24, normalized size = 0.86 \begin {gather*} \frac {x^{4} \log {\relax (2 )}}{\log {\left (3 x^{2} - x \right )} - e^{3}} + e x^{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________