Optimal. Leaf size=21 \[ e^{e^{x/5}}+x+\frac {\log (5)}{x}-\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 21, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 4, integrand size = 39, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.103, Rules used = {12, 14, 2282, 2194} \begin {gather*} x+e^{e^{x/5}}-\log (x)+\frac {\log (5)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {-5 x+5 x^2+e^{e^{x/5}+\frac {x}{5}} x^2-5 \log (5)}{x^2} \, dx\\ &=\frac {1}{5} \int \left (e^{\frac {1}{5} \left (5 e^{x/5}+x\right )}+\frac {5 \left (-x+x^2-\log (5)\right )}{x^2}\right ) \, dx\\ &=\frac {1}{5} \int e^{\frac {1}{5} \left (5 e^{x/5}+x\right )} \, dx+\int \frac {-x+x^2-\log (5)}{x^2} \, dx\\ &=\int \left (1-\frac {1}{x}-\frac {\log (5)}{x^2}\right ) \, dx+\operatorname {Subst}\left (\int e^{e^x+x} \, dx,x,\frac {x}{5}\right )\\ &=x+\frac {\log (5)}{x}-\log (x)+\operatorname {Subst}\left (\int e^x \, dx,x,e^{x/5}\right )\\ &=e^{e^{x/5}}+x+\frac {\log (5)}{x}-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 21, normalized size = 1.00 \begin {gather*} e^{e^{x/5}}+x+\frac {\log (5)}{x}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.95, size = 42, normalized size = 2.00 \begin {gather*} -\frac {{\left (x e^{\left (\frac {1}{5} \, x\right )} \log \relax (x) - {\left (x^{2} + \log \relax (5)\right )} e^{\left (\frac {1}{5} \, x\right )} - x e^{\left (\frac {1}{5} \, x + e^{\left (\frac {1}{5} \, x\right )}\right )}\right )} e^{\left (-\frac {1}{5} \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 44, normalized size = 2.10 \begin {gather*} \frac {{\left (x^{2} e^{\left (\frac {1}{5} \, x\right )} - x e^{\left (\frac {1}{5} \, x\right )} \log \relax (x) + x e^{\left (\frac {1}{5} \, x + e^{\left (\frac {1}{5} \, x\right )}\right )} + e^{\left (\frac {1}{5} \, x\right )} \log \relax (5)\right )} e^{\left (-\frac {1}{5} \, x\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 18, normalized size = 0.86
method | result | size |
default | \({\mathrm e}^{{\mathrm e}^{\frac {x}{5}}}-\ln \relax (x )+x +\frac {\ln \relax (5)}{x}\) | \(18\) |
risch | \({\mathrm e}^{{\mathrm e}^{\frac {x}{5}}}-\ln \relax (x )+x +\frac {\ln \relax (5)}{x}\) | \(18\) |
norman | \(\frac {x^{2}+x \,{\mathrm e}^{{\mathrm e}^{\frac {x}{5}}}+\ln \relax (5)}{x}-\ln \relax (x )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 17, normalized size = 0.81 \begin {gather*} x + \frac {\log \relax (5)}{x} + e^{\left (e^{\left (\frac {1}{5} \, x\right )}\right )} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 17, normalized size = 0.81 \begin {gather*} x+{\mathrm {e}}^{{\left ({\mathrm {e}}^x\right )}^{1/5}}-\ln \relax (x)+\frac {\ln \relax (5)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 15, normalized size = 0.71 \begin {gather*} x + e^{e^{\frac {x}{5}}} - \log {\relax (x )} + \frac {\log {\relax (5 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________