Optimal. Leaf size=23 \[ e^{\frac {3}{x}+x^2} x \log \left (-\frac {3}{2}+e^{x^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.74, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{x^2+\frac {3+x^3}{x}} x^3+e^{\frac {3+x^3}{x}} \left (9-3 x-6 x^3+e^{x^2} \left (-6+2 x+4 x^3\right )\right ) \log \left (\frac {1}{2} \left (-3+2 e^{x^2}\right )\right )}{-3 x+2 e^{x^2} x} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {3}{x}+x^2} \left (\frac {4 e^{x^2} x^3}{-3+2 e^{x^2}}+\left (-3+x+2 x^3\right ) \log \left (-\frac {3}{2}+e^{x^2}\right )\right )}{x} \, dx\\ &=\int \left (\frac {6 e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}}+\frac {e^{\frac {3}{x}+x^2} \left (2 x^3-3 \log \left (-\frac {3}{2}+e^{x^2}\right )+x \log \left (-\frac {3}{2}+e^{x^2}\right )+2 x^3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right )}{x}\right ) \, dx\\ &=6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\int \frac {e^{\frac {3}{x}+x^2} \left (2 x^3-3 \log \left (-\frac {3}{2}+e^{x^2}\right )+x \log \left (-\frac {3}{2}+e^{x^2}\right )+2 x^3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right )}{x} \, dx\\ &=6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\int \frac {e^{\frac {3}{x}+x^2} \left (2 x^3+\left (-3+x+2 x^3\right ) \log \left (-\frac {3}{2}+e^{x^2}\right )\right )}{x} \, dx\\ &=6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\int \left (2 e^{\frac {3}{x}+x^2} x^2+\frac {e^{\frac {3}{x}+x^2} (-1+x) \left (3+2 x+2 x^2\right ) \log \left (-\frac {3}{2}+e^{x^2}\right )}{x}\right ) \, dx\\ &=2 \int e^{\frac {3}{x}+x^2} x^2 \, dx+6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\int \frac {e^{\frac {3}{x}+x^2} (-1+x) \left (3+2 x+2 x^2\right ) \log \left (-\frac {3}{2}+e^{x^2}\right )}{x} \, dx\\ &=2 \int e^{\frac {3}{x}+x^2} x^2 \, dx+6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\log \left (-\frac {3}{2}+e^{x^2}\right ) \int e^{\frac {3}{x}+x^2} \, dx+\left (2 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int e^{\frac {3}{x}+x^2} x^2 \, dx-\left (3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx-\int \frac {4 e^{x^2} x \left (-\int e^{\frac {3}{x}+x^2} \, dx+3 \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx-2 \int e^{\frac {3}{x}+x^2} x^2 \, dx\right )}{3-2 e^{x^2}} \, dx\\ &=2 \int e^{\frac {3}{x}+x^2} x^2 \, dx-4 \int \frac {e^{x^2} x \left (-\int e^{\frac {3}{x}+x^2} \, dx+3 \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx-2 \int e^{\frac {3}{x}+x^2} x^2 \, dx\right )}{3-2 e^{x^2}} \, dx+6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\log \left (-\frac {3}{2}+e^{x^2}\right ) \int e^{\frac {3}{x}+x^2} \, dx+\left (2 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int e^{\frac {3}{x}+x^2} x^2 \, dx-\left (3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx\\ &=2 \int e^{\frac {3}{x}+x^2} x^2 \, dx-4 \int \left (\frac {e^{x^2} x \int e^{\frac {3}{x}+x^2} \, dx}{-3+2 e^{x^2}}-\frac {3 e^{x^2} x \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx}{-3+2 e^{x^2}}+\frac {2 e^{x^2} x \int e^{\frac {3}{x}+x^2} x^2 \, dx}{-3+2 e^{x^2}}\right ) \, dx+6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx+\log \left (-\frac {3}{2}+e^{x^2}\right ) \int e^{\frac {3}{x}+x^2} \, dx+\left (2 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int e^{\frac {3}{x}+x^2} x^2 \, dx-\left (3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx\\ &=2 \int e^{\frac {3}{x}+x^2} x^2 \, dx-4 \int \frac {e^{x^2} x \int e^{\frac {3}{x}+x^2} \, dx}{-3+2 e^{x^2}} \, dx+6 \int \frac {e^{\frac {3}{x}+x^2} x^2}{-3+2 e^{x^2}} \, dx-8 \int \frac {e^{x^2} x \int e^{\frac {3}{x}+x^2} x^2 \, dx}{-3+2 e^{x^2}} \, dx+12 \int \frac {e^{x^2} x \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx}{-3+2 e^{x^2}} \, dx+\log \left (-\frac {3}{2}+e^{x^2}\right ) \int e^{\frac {3}{x}+x^2} \, dx+\left (2 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int e^{\frac {3}{x}+x^2} x^2 \, dx-\left (3 \log \left (-\frac {3}{2}+e^{x^2}\right )\right ) \int \frac {e^{\frac {3}{x}+x^2}}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.67, size = 23, normalized size = 1.00 \begin {gather*} e^{\frac {3}{x}+x^2} x \log \left (-\frac {3}{2}+e^{x^2}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.93, size = 53, normalized size = 2.30 \begin {gather*} x e^{\left (\frac {x^{3} + 3}{x}\right )} \log \left (\frac {1}{2} \, {\left (2 \, e^{\left (\frac {2 \, x^{3} + 3}{x}\right )} - 3 \, e^{\left (\frac {x^{3} + 3}{x}\right )}\right )} e^{\left (-\frac {x^{3} + 3}{x}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.16, size = 37, normalized size = 1.61 \begin {gather*} -x e^{\left (\frac {x^{3} + 3}{x}\right )} \log \relax (2) + x e^{\left (\frac {x^{3} + 3}{x}\right )} \log \left (2 \, e^{\left (x^{2}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 0.87
method | result | size |
risch | \({\mathrm e}^{\frac {x^{3}+3}{x}} x \ln \left ({\mathrm e}^{x^{2}}-\frac {3}{2}\right )\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 37, normalized size = 1.61 \begin {gather*} -x e^{\left (x^{2} + \frac {3}{x}\right )} \log \relax (2) + x e^{\left (x^{2} + \frac {3}{x}\right )} \log \left (2 \, e^{\left (x^{2}\right )} - 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {4\,x^3\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^{\frac {x^3+3}{x}}-\ln \left ({\mathrm {e}}^{x^2}-\frac {3}{2}\right )\,{\mathrm {e}}^{\frac {x^3+3}{x}}\,\left (3\,x-{\mathrm {e}}^{x^2}\,\left (4\,x^3+2\,x-6\right )+6\,x^3-9\right )}{3\,x-2\,x\,{\mathrm {e}}^{x^2}} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________