Optimal. Leaf size=24 \[ -\frac {5 \left (4-\frac {2 x}{e}-5 e^{2 x} \log (4)\right )}{4 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 20, normalized size of antiderivative = 0.83, number of steps used = 4, number of rules used = 3, integrand size = 22, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.136, Rules used = {12, 14, 2197} \begin {gather*} \frac {25 e^{2 x} \log (4)}{4 x}-\frac {5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {20+e^{2 x} (-25+50 x) \log (4)}{x^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {20}{x^2}+\frac {25 e^{2 x} (-1+2 x) \log (4)}{x^2}\right ) \, dx\\ &=-\frac {5}{x}+\frac {1}{4} (25 \log (4)) \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx\\ &=-\frac {5}{x}+\frac {25 e^{2 x} \log (4)}{4 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.75 \begin {gather*} \frac {5 \left (-4+5 e^{2 x} \log (4)\right )}{4 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 15, normalized size = 0.62 \begin {gather*} \frac {5 \, {\left (5 \, e^{\left (2 \, x\right )} \log \relax (2) - 2\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.15, size = 15, normalized size = 0.62 \begin {gather*} \frac {5 \, {\left (5 \, e^{\left (2 \, x\right )} \log \relax (2) - 2\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 15, normalized size = 0.62
method | result | size |
norman | \(\frac {-5+\frac {25 \ln \relax (2) {\mathrm e}^{2 x}}{2}}{x}\) | \(15\) |
default | \(-\frac {5}{x}+\frac {25 \ln \relax (2) {\mathrm e}^{2 x}}{2 x}\) | \(18\) |
risch | \(-\frac {5}{x}+\frac {25 \ln \relax (2) {\mathrm e}^{2 x}}{2 x}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.38, size = 23, normalized size = 0.96 \begin {gather*} 25 \, {\rm Ei}\left (2 \, x\right ) \log \relax (2) - 25 \, \Gamma \left (-1, -2 \, x\right ) \log \relax (2) - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 15, normalized size = 0.62 \begin {gather*} \frac {25\,{\mathrm {e}}^{2\,x}\,\ln \relax (2)-10}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 15, normalized size = 0.62 \begin {gather*} \frac {25 e^{2 x} \log {\relax (2 )}}{2 x} - \frac {5}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________