Optimal. Leaf size=31 \[ x+\frac {e^{3 \left (5+\frac {x}{\log (x)}\right )} x^2}{2 \left (e^x+\log ^2(x)\right )} \]
________________________________________________________________________________________
Rubi [B] time = 4.84, antiderivative size = 72, normalized size of antiderivative = 2.32, number of steps used = 5, number of rules used = 4, integrand size = 137, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.029, Rules used = {6741, 12, 6742, 2288} \begin {gather*} x+\frac {x e^{\frac {3 x}{\log (x)}+15} \left (e^x x-x \log ^3(x)+x \log ^2(x)-e^x x \log (x)\right )}{2 \left (\frac {1}{\log ^2(x)}-\frac {1}{\log (x)}\right ) \log ^2(x) \left (e^x+\log ^2(x)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{2 x} \log ^2(x)+4 e^x \log ^4(x)+2 \log ^6(x)+e^{\frac {3 x+15 \log (x)}{\log (x)}} \left (-3 e^x x^2+3 e^x x^2 \log (x)+\left (-3 x^2+e^x \left (2 x-x^2\right )\right ) \log ^2(x)+\left (-2 x+3 x^2\right ) \log ^3(x)+2 x \log ^4(x)\right )}{2 \log ^2(x) \left (e^x+\log ^2(x)\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {2 e^{2 x} \log ^2(x)+4 e^x \log ^4(x)+2 \log ^6(x)+e^{\frac {3 x+15 \log (x)}{\log (x)}} \left (-3 e^x x^2+3 e^x x^2 \log (x)+\left (-3 x^2+e^x \left (2 x-x^2\right )\right ) \log ^2(x)+\left (-2 x+3 x^2\right ) \log ^3(x)+2 x \log ^4(x)\right )}{\log ^2(x) \left (e^x+\log ^2(x)\right )^2} \, dx\\ &=\frac {1}{2} \int \left (2+\frac {e^{15+\frac {3 x}{\log (x)}} x \left (-3 e^x x+3 e^x x \log (x)+2 e^x \log ^2(x)-3 x \log ^2(x)-e^x x \log ^2(x)-2 \log ^3(x)+3 x \log ^3(x)+2 \log ^4(x)\right )}{\log ^2(x) \left (e^x+\log ^2(x)\right )^2}\right ) \, dx\\ &=x+\frac {1}{2} \int \frac {e^{15+\frac {3 x}{\log (x)}} x \left (-3 e^x x+3 e^x x \log (x)+2 e^x \log ^2(x)-3 x \log ^2(x)-e^x x \log ^2(x)-2 \log ^3(x)+3 x \log ^3(x)+2 \log ^4(x)\right )}{\log ^2(x) \left (e^x+\log ^2(x)\right )^2} \, dx\\ &=x+\frac {e^{15+\frac {3 x}{\log (x)}} x \left (e^x x-e^x x \log (x)+x \log ^2(x)-x \log ^3(x)\right )}{2 \left (\frac {1}{\log ^2(x)}-\frac {1}{\log (x)}\right ) \log ^2(x) \left (e^x+\log ^2(x)\right )^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.20, size = 33, normalized size = 1.06 \begin {gather*} \frac {1}{2} \left (2 x+\frac {e^{15+\frac {3 x}{\log (x)}} x^2}{e^x+\log ^2(x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.79, size = 41, normalized size = 1.32 \begin {gather*} \frac {x^{2} e^{\left (\frac {3 \, {\left (x + 5 \, \log \relax (x)\right )}}{\log \relax (x)}\right )} + 2 \, x \log \relax (x)^{2} + 2 \, x e^{x}}{2 \, {\left (\log \relax (x)^{2} + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 119, normalized size = 3.84 \begin {gather*} \frac {2 \, x^{3} e^{x} \log \relax (x)^{2} + x^{4} e^{\left (x + \frac {3 \, {\left (x + 5 \, \log \relax (x)\right )}}{\log \relax (x)}\right )} + 2 \, x^{3} e^{\left (2 \, x\right )} + 2 \, x^{2} e^{\left (2 \, x\right )} + 4 \, x^{2} e^{\left (\frac {3 \, {\left (x + 5 \, \log \relax (x)\right )}}{\log \relax (x)}\right )} - 4 \, x e^{x} \log \relax (x) + 8 \, x \log \relax (x)^{2} + 8 \, x e^{x}}{2 \, {\left (x^{2} e^{x} \log \relax (x)^{2} + x^{2} e^{\left (2 \, x\right )} + 4 \, \log \relax (x)^{2} + 4 \, e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 30, normalized size = 0.97
method | result | size |
risch | \(x +\frac {x^{2} {\mathrm e}^{\frac {15 \ln \relax (x )+3 x}{\ln \relax (x )}}}{2 \ln \relax (x )^{2}+2 \,{\mathrm e}^{x}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 38, normalized size = 1.23 \begin {gather*} \frac {x^{2} e^{\left (\frac {3 \, x}{\log \relax (x)} + 15\right )} + 2 \, x \log \relax (x)^{2} + 2 \, x e^{x}}{2 \, {\left (\log \relax (x)^{2} + e^{x}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.53, size = 29, normalized size = 0.94 \begin {gather*} x+\frac {x^2\,{\mathrm {e}}^{15}\,{\mathrm {e}}^{\frac {3\,x}{\ln \relax (x)}}}{2\,\left ({\ln \relax (x)}^2+{\mathrm {e}}^x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.44, size = 29, normalized size = 0.94 \begin {gather*} \frac {x^{2} e^{\frac {3 x + 15 \log {\relax (x )}}{\log {\relax (x )}}}}{2 e^{x} + 2 \log {\relax (x )}^{2}} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________