Optimal. Leaf size=28 \[ x-3 \left (-\log (2)+\log \left (-1-4 \left (16-\frac {3}{(1-x)^2}\right )^2+x\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.14, antiderivative size = 38, normalized size of antiderivative = 1.36, number of steps used = 3, number of rules used = 2, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.034, Rules used = {2074, 1587} \begin {gather*} -3 \log \left (-x^5+1029 x^4-4106 x^3+5770 x^2-3333 x+677\right )+x+12 \log (1-x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1587
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (1+\frac {12}{-1+x}-\frac {3 \left (3333-11540 x+12318 x^2-4116 x^3+5 x^4\right )}{-677+3333 x-5770 x^2+4106 x^3-1029 x^4+x^5}\right ) \, dx\\ &=x+12 \log (1-x)-3 \int \frac {3333-11540 x+12318 x^2-4116 x^3+5 x^4}{-677+3333 x-5770 x^2+4106 x^3-1029 x^4+x^5} \, dx\\ &=x+12 \log (1-x)-3 \log \left (677-3333 x+5770 x^2-4106 x^3+1029 x^4-x^5\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 38, normalized size = 1.36 \begin {gather*} x+12 \log (1-x)-3 \log \left (677-3333 x+5770 x^2-4106 x^3+1029 x^4-x^5\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.73, size = 34, normalized size = 1.21 \begin {gather*} x - 3 \, \log \left (x^{5} - 1029 \, x^{4} + 4106 \, x^{3} - 5770 \, x^{2} + 3333 \, x - 677\right ) + 12 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.13, size = 36, normalized size = 1.29 \begin {gather*} x - 3 \, \log \left ({\left | x^{5} - 1029 \, x^{4} + 4106 \, x^{3} - 5770 \, x^{2} + 3333 \, x - 677 \right |}\right ) + 12 \, \log \left ({\left | x - 1 \right |}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 35, normalized size = 1.25
method | result | size |
default | \(x -3 \ln \left (x^{5}-1029 x^{4}+4106 x^{3}-5770 x^{2}+3333 x -677\right )+12 \ln \left (x -1\right )\) | \(35\) |
norman | \(x -3 \ln \left (x^{5}-1029 x^{4}+4106 x^{3}-5770 x^{2}+3333 x -677\right )+12 \ln \left (x -1\right )\) | \(35\) |
risch | \(x -3 \ln \left (x^{5}-1029 x^{4}+4106 x^{3}-5770 x^{2}+3333 x -677\right )+12 \ln \left (x -1\right )\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 34, normalized size = 1.21 \begin {gather*} x - 3 \, \log \left (x^{5} - 1029 \, x^{4} + 4106 \, x^{3} - 5770 \, x^{2} + 3333 \, x - 677\right ) + 12 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.16, size = 34, normalized size = 1.21 \begin {gather*} x-3\,\ln \left (x^5-1029\,x^4+4106\,x^3-5770\,x^2+3333\,x-677\right )+12\,\ln \left (x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 34, normalized size = 1.21 \begin {gather*} x + 12 \log {\left (x - 1 \right )} - 3 \log {\left (x^{5} - 1029 x^{4} + 4106 x^{3} - 5770 x^{2} + 3333 x - 677 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________