Optimal. Leaf size=19 \[ 2+\frac {10 (2 x-\log (-1+x))}{-2+x} \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 23, normalized size of antiderivative = 1.21, number of steps used = 8, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {6742, 77, 2395, 36, 31} \begin {gather*} \frac {10 \log (x-1)}{2-x}-\frac {40}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 31
Rule 36
Rule 77
Rule 2395
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {10 (-6+5 x)}{(-2+x)^2 (-1+x)}+\frac {10 \log (-1+x)}{(-2+x)^2}\right ) \, dx\\ &=-\left (10 \int \frac {-6+5 x}{(-2+x)^2 (-1+x)} \, dx\right )+10 \int \frac {\log (-1+x)}{(-2+x)^2} \, dx\\ &=\frac {10 \log (-1+x)}{2-x}-10 \int \left (\frac {1}{1-x}+\frac {4}{(-2+x)^2}+\frac {1}{-2+x}\right ) \, dx+10 \int \frac {1}{(-2+x) (-1+x)} \, dx\\ &=-\frac {40}{2-x}+10 \log (1-x)-10 \log (2-x)+\frac {10 \log (-1+x)}{2-x}+10 \int \frac {1}{-2+x} \, dx-10 \int \frac {1}{-1+x} \, dx\\ &=-\frac {40}{2-x}+\frac {10 \log (-1+x)}{2-x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.04, size = 39, normalized size = 2.05 \begin {gather*} 10 \left (2 \tanh ^{-1}(3-2 x)+\log (1-x)-\log (2-x)+\frac {4-\log (-1+x)}{-2+x}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 13, normalized size = 0.68 \begin {gather*} -\frac {10 \, {\left (\log \left (x - 1\right ) - 4\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 19, normalized size = 1.00 \begin {gather*} -\frac {10 \, \log \left (x - 1\right )}{x - 2} + \frac {40}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 15, normalized size = 0.79
method | result | size |
norman | \(\frac {-10 \ln \left (x -1\right )+40}{x -2}\) | \(15\) |
risch | \(-\frac {10 \ln \left (x -1\right )}{x -2}+\frac {40}{x -2}\) | \(20\) |
derivativedivides | \(-\frac {10 \ln \left (x -1\right ) \left (x -1\right )}{x -2}+\frac {40}{x -2}+10 \ln \left (x -1\right )\) | \(29\) |
default | \(-\frac {10 \ln \left (x -1\right ) \left (x -1\right )}{x -2}+\frac {40}{x -2}+10 \ln \left (x -1\right )\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 33, normalized size = 1.74 \begin {gather*} -\frac {10 \, {\left ({\left (6 \, x - 11\right )} \log \left (x - 1\right ) - 10\right )}}{x - 2} - \frac {60}{x - 2} + 60 \, \log \left (x - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.12, size = 15, normalized size = 0.79 \begin {gather*} -\frac {10\,\ln \left (x-1\right )-40}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.74 \begin {gather*} - \frac {10 \log {\left (x - 1 \right )}}{x - 2} + \frac {40}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________