Optimal. Leaf size=19 \[ 8-e^{2 x} x-\frac {x+\log (4)}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.02, antiderivative size = 31, normalized size of antiderivative = 1.63, number of steps used = 4, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {14, 2176, 2194} \begin {gather*} -\frac {1}{2} e^{2 x} (2 x+1)+\frac {e^{2 x}}{2}-\frac {\log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{2 x} (1+2 x)+\frac {\log (4)}{x^2}\right ) \, dx\\ &=-\frac {\log (4)}{x}-\int e^{2 x} (1+2 x) \, dx\\ &=-\frac {1}{2} e^{2 x} (1+2 x)-\frac {\log (4)}{x}+\int e^{2 x} \, dx\\ &=\frac {e^{2 x}}{2}-\frac {1}{2} e^{2 x} (1+2 x)-\frac {\log (4)}{x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 16, normalized size = 0.84 \begin {gather*} -e^{2 x} x-\frac {\log (4)}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.07, size = 18, normalized size = 0.95 \begin {gather*} -\frac {x^{2} e^{\left (2 \, x\right )} + 2 \, \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 18, normalized size = 0.95 \begin {gather*} -\frac {x^{2} e^{\left (2 \, x\right )} + 2 \, \log \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 16, normalized size = 0.84
method | result | size |
derivativedivides | \(-\frac {2 \ln \relax (2)}{x}-x \,{\mathrm e}^{2 x}\) | \(16\) |
default | \(-\frac {2 \ln \relax (2)}{x}-x \,{\mathrm e}^{2 x}\) | \(16\) |
risch | \(-\frac {2 \ln \relax (2)}{x}-x \,{\mathrm e}^{2 x}\) | \(16\) |
norman | \(\frac {-{\mathrm e}^{2 x} x^{2}-2 \ln \relax (2)}{x}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 25, normalized size = 1.32 \begin {gather*} -\frac {1}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - \frac {2 \, \log \relax (2)}{x} - \frac {1}{2} \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.06, size = 15, normalized size = 0.79 \begin {gather*} -x\,{\mathrm {e}}^{2\,x}-\frac {2\,\ln \relax (2)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 14, normalized size = 0.74 \begin {gather*} - x e^{2 x} - \frac {2 \log {\relax (2 )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________