Optimal. Leaf size=28 \[ \frac {1}{25} e^{\left (e^{5/2}-2 x\right )^4 \left (-x+x^2\right )^2} x \]
________________________________________________________________________________________
Rubi [B] time = 4.70, antiderivative size = 295, normalized size of antiderivative = 10.54, number of steps used = 2, number of rules used = 2, integrand size = 203, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.010, Rules used = {12, 2288} \begin {gather*} \frac {\left (64 x^8-112 x^7+48 x^6-16 e^{5/2} \left (7 x^7-12 x^6+5 x^5\right )+24 e^5 \left (3 x^6-5 x^5+2 x^4\right )-4 e^{15/2} \left (5 x^5-8 x^4+3 x^3\right )+e^{10} \left (2 x^4-3 x^3+x^2\right )\right ) \exp \left (16 x^8-32 x^7+16 x^6-32 e^{5/2} \left (x^7-2 x^6+x^5\right )+24 e^5 \left (x^6-2 x^5+x^4\right )-8 e^{15/2} \left (x^5-2 x^4+x^3\right )+e^{10} \left (x^4-2 x^3+x^2\right )\right )}{25 \left (64 x^7-112 x^6+48 x^5+e^{10} \left (2 x^3-3 x^2+x\right )-16 e^{5/2} \left (7 x^6-12 x^5+5 x^4\right )+24 e^5 \left (3 x^5-5 x^4+2 x^3\right )-4 e^{15/2} \left (5 x^4-8 x^3+3 x^2\right )\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{25} \int \exp \left (16 x^6-32 x^7+16 x^8+e^{10} \left (x^2-2 x^3+x^4\right )+e^{15/2} \left (-8 x^3+16 x^4-8 x^5\right )+e^5 \left (24 x^4-48 x^5+24 x^6\right )+e^{5/2} \left (-32 x^5+64 x^6-32 x^7\right )\right ) \left (1+96 x^6-224 x^7+128 x^8+e^{10} \left (2 x^2-6 x^3+4 x^4\right )+e^{15/2} \left (-24 x^3+64 x^4-40 x^5\right )+e^5 \left (96 x^4-240 x^5+144 x^6\right )+e^{5/2} \left (-160 x^5+384 x^6-224 x^7\right )\right ) \, dx\\ &=\frac {\exp \left (16 x^6-32 x^7+16 x^8+e^{10} \left (x^2-2 x^3+x^4\right )-8 e^{15/2} \left (x^3-2 x^4+x^5\right )+24 e^5 \left (x^4-2 x^5+x^6\right )-32 e^{5/2} \left (x^5-2 x^6+x^7\right )\right ) \left (48 x^6-112 x^7+64 x^8+e^{10} \left (x^2-3 x^3+2 x^4\right )-4 e^{15/2} \left (3 x^3-8 x^4+5 x^5\right )+24 e^5 \left (2 x^4-5 x^5+3 x^6\right )-16 e^{5/2} \left (5 x^5-12 x^6+7 x^7\right )\right )}{25 \left (48 x^5-112 x^6+64 x^7+e^{10} \left (x-3 x^2+2 x^3\right )-4 e^{15/2} \left (3 x^2-8 x^3+5 x^4\right )+24 e^5 \left (2 x^3-5 x^4+3 x^5\right )-16 e^{5/2} \left (5 x^4-12 x^5+7 x^6\right )\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.17, size = 27, normalized size = 0.96 \begin {gather*} \frac {1}{25} e^{\left (e^{5/2}-2 x\right )^4 (-1+x)^2 x^2} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 1.24, size = 83, normalized size = 2.96 \begin {gather*} \frac {1}{25} \, x e^{\left (16 \, x^{8} - 32 \, x^{7} + 16 \, x^{6} + {\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{10} - 8 \, {\left (x^{5} - 2 \, x^{4} + x^{3}\right )} e^{\frac {15}{2}} + 24 \, {\left (x^{6} - 2 \, x^{5} + x^{4}\right )} e^{5} - 32 \, {\left (x^{7} - 2 \, x^{6} + x^{5}\right )} e^{\frac {5}{2}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 1.14, size = 102, normalized size = 3.64 \begin {gather*} \frac {1}{25} \, x e^{\left (16 \, x^{8} - 32 \, x^{7} e^{\frac {5}{2}} - 32 \, x^{7} + 24 \, x^{6} e^{5} + 64 \, x^{6} e^{\frac {5}{2}} + 16 \, x^{6} - 8 \, x^{5} e^{\frac {15}{2}} - 48 \, x^{5} e^{5} - 32 \, x^{5} e^{\frac {5}{2}} + x^{4} e^{10} + 16 \, x^{4} e^{\frac {15}{2}} + 24 \, x^{4} e^{5} - 2 \, x^{3} e^{10} - 8 \, x^{3} e^{\frac {15}{2}} + x^{2} e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.02, size = 121, normalized size = 4.32 \[\frac {x \,{\mathrm e}^{x^{4} {\mathrm e}^{10}-8 \,{\mathrm e}^{\frac {15}{2}} x^{5}+24 x^{6} {\mathrm e}^{5}-32 \,{\mathrm e}^{\frac {5}{2}} x^{7}+16 x^{8}-2 x^{3} {\mathrm e}^{10}+16 \,{\mathrm e}^{\frac {15}{2}} x^{4}-48 x^{5} {\mathrm e}^{5}+64 \,{\mathrm e}^{\frac {5}{2}} x^{6}-32 x^{7}+x^{2} {\mathrm e}^{10}-8 \,{\mathrm e}^{\frac {15}{2}} x^{3}+24 x^{4} {\mathrm e}^{5}-32 \,{\mathrm e}^{\frac {5}{2}} x^{5}+16 x^{6}}}{25}\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.21, size = 102, normalized size = 3.64 \begin {gather*} \frac {1}{25} \, x e^{\left (16 \, x^{8} - 32 \, x^{7} e^{\frac {5}{2}} - 32 \, x^{7} + 24 \, x^{6} e^{5} + 64 \, x^{6} e^{\frac {5}{2}} + 16 \, x^{6} - 8 \, x^{5} e^{\frac {15}{2}} - 48 \, x^{5} e^{5} - 32 \, x^{5} e^{\frac {5}{2}} + x^{4} e^{10} + 16 \, x^{4} e^{\frac {15}{2}} + 24 \, x^{4} e^{5} - 2 \, x^{3} e^{10} - 8 \, x^{3} e^{\frac {15}{2}} + x^{2} e^{10}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.17, size = 115, normalized size = 4.11 \begin {gather*} \frac {x\,{\mathrm {e}}^{x^2\,{\mathrm {e}}^{10}}\,{\mathrm {e}}^{x^4\,{\mathrm {e}}^{10}}\,{\mathrm {e}}^{-2\,x^3\,{\mathrm {e}}^{10}}\,{\mathrm {e}}^{-8\,x^3\,{\mathrm {e}}^{15/2}}\,{\mathrm {e}}^{-8\,x^5\,{\mathrm {e}}^{15/2}}\,{\mathrm {e}}^{24\,x^4\,{\mathrm {e}}^5}\,{\mathrm {e}}^{24\,x^6\,{\mathrm {e}}^5}\,{\mathrm {e}}^{16\,x^4\,{\mathrm {e}}^{15/2}}\,{\mathrm {e}}^{-32\,x^5\,{\mathrm {e}}^{5/2}}\,{\mathrm {e}}^{-32\,x^7\,{\mathrm {e}}^{5/2}}\,{\mathrm {e}}^{-48\,x^5\,{\mathrm {e}}^5}\,{\mathrm {e}}^{64\,x^6\,{\mathrm {e}}^{5/2}}\,{\mathrm {e}}^{16\,x^6}\,{\mathrm {e}}^{16\,x^8}\,{\mathrm {e}}^{-32\,x^7}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.45, size = 94, normalized size = 3.36 \begin {gather*} \frac {x e^{16 x^{8} - 32 x^{7} + 16 x^{6} + \left (x^{4} - 2 x^{3} + x^{2}\right ) e^{10} + \left (- 8 x^{5} + 16 x^{4} - 8 x^{3}\right ) e^{\frac {15}{2}} + \left (24 x^{6} - 48 x^{5} + 24 x^{4}\right ) e^{5} + \left (- 32 x^{7} + 64 x^{6} - 32 x^{5}\right ) e^{\frac {5}{2}}}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________