Optimal. Leaf size=26 \[ \frac {9}{\left (-3+\frac {e^6}{(-3+x) x}\right ) (-3+x) x^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.18, antiderivative size = 57, normalized size of antiderivative = 2.19, number of steps used = 7, number of rules used = 4, integrand size = 55, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.073, Rules used = {2074, 638, 618, 206} \begin {gather*} \frac {9}{e^6 x}-\frac {27 \left (3 \left (27+4 e^6\right )-\left (27+4 e^6\right ) x\right )}{e^6 \left (27+4 e^6\right ) \left (-3 x^2+9 x+e^6\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 206
Rule 618
Rule 638
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {9}{e^6 x^2}+\frac {27 \left (27+2 e^6-9 x\right )}{e^6 \left (e^6+9 x-3 x^2\right )^2}-\frac {27}{e^6 \left (e^6+9 x-3 x^2\right )}\right ) \, dx\\ &=\frac {9}{e^6 x}+\frac {27 \int \frac {27+2 e^6-9 x}{\left (e^6+9 x-3 x^2\right )^2} \, dx}{e^6}-\frac {27 \int \frac {1}{e^6+9 x-3 x^2} \, dx}{e^6}\\ &=\frac {9}{e^6 x}-\frac {27 \left (3 \left (27+4 e^6\right )-\left (27+4 e^6\right ) x\right )}{e^6 \left (27+4 e^6\right ) \left (e^6+9 x-3 x^2\right )}+\frac {27 \int \frac {1}{e^6+9 x-3 x^2} \, dx}{e^6}+\frac {54 \operatorname {Subst}\left (\int \frac {1}{3 \left (27+4 e^6\right )-x^2} \, dx,x,9-6 x\right )}{e^6}\\ &=\frac {9}{e^6 x}-\frac {27 \left (3 \left (27+4 e^6\right )-\left (27+4 e^6\right ) x\right )}{e^6 \left (27+4 e^6\right ) \left (e^6+9 x-3 x^2\right )}+\frac {18 \sqrt {\frac {3}{27+4 e^6}} \tanh ^{-1}\left (\sqrt {\frac {3}{27+4 e^6}} (3-2 x)\right )}{e^6}-\frac {54 \operatorname {Subst}\left (\int \frac {1}{3 \left (27+4 e^6\right )-x^2} \, dx,x,9-6 x\right )}{e^6}\\ &=\frac {9}{e^6 x}-\frac {27 \left (3 \left (27+4 e^6\right )-\left (27+4 e^6\right ) x\right )}{e^6 \left (27+4 e^6\right ) \left (e^6+9 x-3 x^2\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 19, normalized size = 0.73 \begin {gather*} -\frac {9}{x \left (-e^6+3 (-3+x) x\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 20, normalized size = 0.77 \begin {gather*} -\frac {9}{3 \, x^{3} - 9 \, x^{2} - x e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 274, normalized size = 10.54 \begin {gather*} -9 \, {\left (\frac {{\left (3 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - 3\right )}^{2} e^{42} + 36 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - 3\right )} e^{42} + 4 \, e^{48} + 108 \, e^{42}\right )} \log \left (x + \frac {1}{2} \, \sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - \frac {3}{2}\right )}{3 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - 3\right )}^{3} + 27 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - 3\right )}^{2} - 2 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - 3\right )} {\left (2 \, e^{6} - 27\right )} - 12 \, e^{6}} - \frac {{\left (3 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} + 3\right )}^{2} e^{42} - 36 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} + 3\right )} e^{42} + 4 \, e^{48} + 108 \, e^{42}\right )} \log \left (x - \frac {1}{2} \, \sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} - \frac {3}{2}\right )}{3 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} + 3\right )}^{3} - 27 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} + 3\right )}^{2} - 2 \, {\left (\sqrt {\frac {1}{3}} \sqrt {4 \, e^{6} + 27} + 3\right )} {\left (2 \, e^{6} - 27\right )} + 12 \, e^{6}}\right )} e^{\left (-48\right )} + \frac {9 \, e^{\left (-6\right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 19, normalized size = 0.73
method | result | size |
risch | \(\frac {9}{x \left ({\mathrm e}^{6}-3 x^{2}+9 x \right )}\) | \(19\) |
gosper | \(\frac {9}{x \left ({\mathrm e}^{6}-3 x^{2}+9 x \right )}\) | \(21\) |
norman | \(\frac {9}{x \left ({\mathrm e}^{6}-3 x^{2}+9 x \right )}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 20, normalized size = 0.77 \begin {gather*} -\frac {9}{3 \, x^{3} - 9 \, x^{2} - x e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.26, size = 18, normalized size = 0.69 \begin {gather*} \frac {9}{x\,\left (-3\,x^2+9\,x+{\mathrm {e}}^6\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.49, size = 17, normalized size = 0.65 \begin {gather*} - \frac {9}{3 x^{3} - 9 x^{2} - x e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________