Optimal. Leaf size=28 \[ 2+3 \left (-\frac {e^5}{x}-\frac {3 x}{4}-e^{-3+2 x} x\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 41, normalized size of antiderivative = 1.46, number of steps used = 7, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {12, 14, 2176, 2194} \begin {gather*} -\frac {9 x}{4}+\frac {3}{2} e^{2 x-3}-\frac {3}{2} e^{2 x-3} (2 x+1)-\frac {3 e^5}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2176
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{4} \int \frac {12 e^5-9 x^2+e^{-3+2 x} \left (-12 x^2-24 x^3\right )}{x^2} \, dx\\ &=\frac {1}{4} \int \left (-12 e^{-3+2 x} (1+2 x)+\frac {3 \left (4 e^5-3 x^2\right )}{x^2}\right ) \, dx\\ &=\frac {3}{4} \int \frac {4 e^5-3 x^2}{x^2} \, dx-3 \int e^{-3+2 x} (1+2 x) \, dx\\ &=-\frac {3}{2} e^{-3+2 x} (1+2 x)+\frac {3}{4} \int \left (-3+\frac {4 e^5}{x^2}\right ) \, dx+3 \int e^{-3+2 x} \, dx\\ &=\frac {3}{2} e^{-3+2 x}-\frac {3 e^5}{x}-\frac {9 x}{4}-\frac {3}{2} e^{-3+2 x} (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 24, normalized size = 0.86 \begin {gather*} -\frac {3 e^5}{x}-\frac {9 x}{4}-3 e^{-3+2 x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.75, size = 26, normalized size = 0.93 \begin {gather*} -\frac {3 \, {\left (4 \, x^{2} e^{\left (2 \, x - 3\right )} + 3 \, x^{2} + 4 \, e^{5}\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 28, normalized size = 1.00 \begin {gather*} -\frac {3 \, {\left (3 \, x^{2} e^{3} + 4 \, x^{2} e^{\left (2 \, x\right )} + 4 \, e^{8}\right )} e^{\left (-3\right )}}{4 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 21, normalized size = 0.75
method | result | size |
risch | \(-\frac {9 x}{4}-\frac {3 \,{\mathrm e}^{5}}{x}-3 \,{\mathrm e}^{2 x -3} x\) | \(21\) |
norman | \(\frac {-\frac {9 x^{2}}{4}-3 \,{\mathrm e}^{2 x -3} x^{2}-3 \,{\mathrm e}^{5}}{x}\) | \(26\) |
derivativedivides | \(-\frac {9 x}{4}+\frac {27}{8}-\frac {3 \,{\mathrm e}^{5}}{x}-\frac {9 \,{\mathrm e}^{2 x -3}}{2}-\frac {3 \,{\mathrm e}^{2 x -3} \left (2 x -3\right )}{2}\) | \(34\) |
default | \(-\frac {9 x}{4}+\frac {27}{8}-\frac {3 \,{\mathrm e}^{5}}{x}-\frac {9 \,{\mathrm e}^{2 x -3}}{2}-\frac {3 \,{\mathrm e}^{2 x -3} \left (2 x -3\right )}{2}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 32, normalized size = 1.14 \begin {gather*} -\frac {3}{2} \, {\left (2 \, x - 1\right )} e^{\left (2 \, x - 3\right )} - \frac {9}{4} \, x - \frac {3 \, e^{5}}{x} - \frac {3}{2} \, e^{\left (2 \, x - 3\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.09, size = 24, normalized size = 0.86 \begin {gather*} -\frac {3\,{\mathrm {e}}^5}{x}-\frac {3\,x\,{\mathrm {e}}^{-3}\,\left (4\,{\mathrm {e}}^{2\,x}+3\,{\mathrm {e}}^3\right )}{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 22, normalized size = 0.79 \begin {gather*} - 3 x e^{2 x - 3} - \frac {9 x}{4} - \frac {3 e^{5}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________