Optimal. Leaf size=35 \[ \frac {e^x}{2+\frac {e^x-3 (-2+2 x)}{(4+5 (1-x)) \log (x)}} \]
________________________________________________________________________________________
Rubi [F] time = 23.27, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{2 x} (9-5 x)+e^x \left (54-84 x+30 x^2\right )+\left (-5 e^{2 x} x+e^x \left (78 x-84 x^2+30 x^3\right )\right ) \log (x)+e^x \left (162 x-180 x^2+50 x^3\right ) \log ^2(x)}{36 x+e^{2 x} x-72 x^2+36 x^3+e^x \left (12 x-12 x^2\right )+\left (216 x-336 x^2+120 x^3+e^x \left (36 x-20 x^2\right )\right ) \log (x)+\left (324 x-360 x^2+100 x^3\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^x \left (-\left (\left (6+e^x-6 x\right ) (-9+5 x)\right )+x \left (78-5 e^x-84 x+30 x^2\right ) \log (x)+2 (9-5 x)^2 x \log ^2(x)\right )}{x \left (6+e^x-6 x-2 (-9+5 x) \log (x)\right )^2} \, dx\\ &=\int \left (\frac {e^x (-9+5 x+5 x \log (x))}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )}+\frac {2 e^x (-9+5 x) \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}\right ) \, dx\\ &=2 \int \frac {e^x (-9+5 x) \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx+\int \frac {e^x (-9+5 x+5 x \log (x))}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )} \, dx\\ &=2 \int \left (\frac {5 e^x \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}-\frac {9 e^x \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}\right ) \, dx+\int \left (-\frac {5 e^x}{6+e^x-6 x+18 \log (x)-10 x \log (x)}-\frac {9 e^x}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )}+\frac {5 e^x \log (x)}{-6-e^x+6 x-18 \log (x)+10 x \log (x)}\right ) \, dx\\ &=-\left (5 \int \frac {e^x}{6+e^x-6 x+18 \log (x)-10 x \log (x)} \, dx\right )+5 \int \frac {e^x \log (x)}{-6-e^x+6 x-18 \log (x)+10 x \log (x)} \, dx-9 \int \frac {e^x}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )} \, dx+10 \int \frac {e^x \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-18 \int \frac {e^x \log (x) \left (9-11 x+3 x^2-14 x \log (x)+5 x^2 \log (x)\right )}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx\\ &=-\left (5 \int \frac {e^x}{6+e^x-6 x+18 \log (x)-10 x \log (x)} \, dx\right )+5 \int \frac {e^x \log (x)}{-6-e^x+6 x-18 \log (x)+10 x \log (x)} \, dx-9 \int \frac {e^x}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )} \, dx+10 \int \left (\frac {9 e^x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}-\frac {11 e^x x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}+\frac {3 e^x x^2 \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}-\frac {14 e^x x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}+\frac {5 e^x x^2 \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}\right ) \, dx-18 \int \left (-\frac {11 e^x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}+\frac {9 e^x \log (x)}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}+\frac {3 e^x x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}-\frac {14 e^x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}+\frac {5 e^x x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2}\right ) \, dx\\ &=-\left (5 \int \frac {e^x}{6+e^x-6 x+18 \log (x)-10 x \log (x)} \, dx\right )+5 \int \frac {e^x \log (x)}{-6-e^x+6 x-18 \log (x)+10 x \log (x)} \, dx-9 \int \frac {e^x}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )} \, dx+30 \int \frac {e^x x^2 \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx+50 \int \frac {e^x x^2 \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-54 \int \frac {e^x x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx+90 \int \frac {e^x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-90 \int \frac {e^x x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-110 \int \frac {e^x x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-140 \int \frac {e^x x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx-162 \int \frac {e^x \log (x)}{x \left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx+198 \int \frac {e^x \log (x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx+252 \int \frac {e^x \log ^2(x)}{\left (-6-e^x+6 x-18 \log (x)+10 x \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 3.63, size = 31, normalized size = 0.89 \begin {gather*} -\frac {e^x (-9+5 x) \log (x)}{6+e^x-6 x-2 (-9+5 x) \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 30, normalized size = 0.86 \begin {gather*} \frac {{\left (5 \, x - 9\right )} e^{x} \log \relax (x)}{2 \, {\left (5 \, x - 9\right )} \log \relax (x) + 6 \, x - e^{x} - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 35, normalized size = 1.00 \begin {gather*} \frac {5 \, x e^{x} \log \relax (x) - 9 \, e^{x} \log \relax (x)}{10 \, x \log \relax (x) + 6 \, x - e^{x} - 18 \, \log \relax (x) - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 39, normalized size = 1.11
method | result | size |
risch | \(\frac {{\mathrm e}^{x}}{2}-\frac {\left (6 x -{\mathrm e}^{x}-6\right ) {\mathrm e}^{x}}{2 \left (10 x \ln \relax (x )-18 \ln \relax (x )-{\mathrm e}^{x}+6 x -6\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.42, size = 30, normalized size = 0.86 \begin {gather*} \frac {{\left (5 \, x - 9\right )} e^{x} \log \relax (x)}{2 \, {\left (5 \, x - 9\right )} \log \relax (x) + 6 \, x - e^{x} - 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {-{\mathrm {e}}^x\,\left (50\,x^3-180\,x^2+162\,x\right )\,{\ln \relax (x)}^2+\left (5\,x\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^x\,\left (30\,x^3-84\,x^2+78\,x\right )\right )\,\ln \relax (x)-{\mathrm {e}}^x\,\left (30\,x^2-84\,x+54\right )+{\mathrm {e}}^{2\,x}\,\left (5\,x-9\right )}{36\,x+x\,{\mathrm {e}}^{2\,x}+{\ln \relax (x)}^2\,\left (100\,x^3-360\,x^2+324\,x\right )+\ln \relax (x)\,\left (216\,x+{\mathrm {e}}^x\,\left (36\,x-20\,x^2\right )-336\,x^2+120\,x^3\right )+{\mathrm {e}}^x\,\left (12\,x-12\,x^2\right )-72\,x^2+36\,x^3} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 76, normalized size = 2.17 \begin {gather*} - 5 x \log {\relax (x )} + 9 \log {\relax (x )} + \frac {- 50 x^{2} \log {\relax (x )}^{2} - 30 x^{2} \log {\relax (x )} + 180 x \log {\relax (x )}^{2} + 84 x \log {\relax (x )} - 162 \log {\relax (x )}^{2} - 54 \log {\relax (x )}}{- 10 x \log {\relax (x )} - 6 x + e^{x} + 18 \log {\relax (x )} + 6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________