Optimal. Leaf size=24 \[ x^2+\log \left (-5+\log \left (x-\log \left (x+x \left (1+5 x^2\right )\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 7.48, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2-2 x+15 x^2+15 x^3+50 x^5+\left (-20 x^2-50 x^4\right ) \log \left (2 x+5 x^3\right )+\left (-4 x^3-10 x^5+\left (4 x^2+10 x^4\right ) \log \left (2 x+5 x^3\right )\right ) \log \left (x-\log \left (2 x+5 x^3\right )\right )}{10 x^2+25 x^4+\left (-10 x-25 x^3\right ) \log \left (2 x+5 x^3\right )+\left (-2 x^2-5 x^4+\left (2 x+5 x^3\right ) \log \left (2 x+5 x^3\right )\right ) \log \left (x-\log \left (2 x+5 x^3\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2-2 x+15 x^2+15 x^3+50 x^5+\left (-20 x^2-50 x^4\right ) \log \left (2 x+5 x^3\right )+\left (-4 x^3-10 x^5+\left (4 x^2+10 x^4\right ) \log \left (2 x+5 x^3\right )\right ) \log \left (x-\log \left (2 x+5 x^3\right )\right )}{x \left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (5-\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx\\ &=\int \left (\frac {2}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}-\frac {2}{x \left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}-\frac {15 x}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}-\frac {15 x^2}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}-\frac {50 x^4}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}+\frac {10 x \log \left (x \left (2+5 x^2\right )\right )}{\left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )}+\frac {2 x \log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )}{-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )}\right ) \, dx\\ &=2 \int \frac {1}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx-2 \int \frac {1}{x \left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx+2 \int \frac {x \log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )}{-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )} \, dx+10 \int \frac {x \log \left (x \left (2+5 x^2\right )\right )}{\left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx-15 \int \frac {x}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx-15 \int \frac {x^2}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx-50 \int \frac {x^4}{\left (2+5 x^2\right ) \left (x-\log \left (x \left (2+5 x^2\right )\right )\right ) \left (-5+\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 24, normalized size = 1.00 \begin {gather*} x^2+\log \left (5-\log \left (x-\log \left (x \left (2+5 x^2\right )\right )\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 22, normalized size = 0.92 \begin {gather*} x^{2} + \log \left (\log \left (x - \log \left (5 \, x^{3} + 2 \, x\right )\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.43, size = 22, normalized size = 0.92 \begin {gather*} x^{2} + \log \left (\log \left (x - \log \left (5 \, x^{3} + 2 \, x\right )\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.01, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (10 x^{4}+4 x^{2}\right ) \ln \left (5 x^{3}+2 x \right )-10 x^{5}-4 x^{3}\right ) \ln \left (-\ln \left (5 x^{3}+2 x \right )+x \right )+\left (-50 x^{4}-20 x^{2}\right ) \ln \left (5 x^{3}+2 x \right )+50 x^{5}+15 x^{3}+15 x^{2}-2 x +2}{\left (\left (5 x^{3}+2 x \right ) \ln \left (5 x^{3}+2 x \right )-5 x^{4}-2 x^{2}\right ) \ln \left (-\ln \left (5 x^{3}+2 x \right )+x \right )+\left (-25 x^{3}-10 x \right ) \ln \left (5 x^{3}+2 x \right )+25 x^{4}+10 x^{2}}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.41, size = 24, normalized size = 1.00 \begin {gather*} x^{2} + \log \left (\log \left (x - \log \left (5 \, x^{2} + 2\right ) - \log \relax (x)\right ) - 5\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.51, size = 22, normalized size = 0.92 \begin {gather*} \ln \left (\ln \left (x-\ln \left (5\,x^3+2\,x\right )\right )-5\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.78, size = 19, normalized size = 0.79 \begin {gather*} x^{2} + \log {\left (\log {\left (x - \log {\left (5 x^{3} + 2 x \right )} \right )} - 5 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________