Optimal. Leaf size=28 \[ 3 \left (5+e^x-x \left (2-\log \left (\frac {x}{1-2 e^{x^2}}\right )\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.42, antiderivative size = 26, normalized size of antiderivative = 0.93, number of steps used = 7, number of rules used = 3, integrand size = 62, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6742, 2194, 2548} \begin {gather*} 3 x \log \left (\frac {x}{1-2 e^{x^2}}\right )-6 x+3 e^x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2194
Rule 2548
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {6 x^2}{-1+2 e^{x^2}}+3 \left (-1+e^x-2 x^2+\log \left (\frac {x}{1-2 e^{x^2}}\right )\right )\right ) \, dx\\ &=3 \int \left (-1+e^x-2 x^2+\log \left (\frac {x}{1-2 e^{x^2}}\right )\right ) \, dx-6 \int \frac {x^2}{-1+2 e^{x^2}} \, dx\\ &=-3 x-2 x^3+3 \int e^x \, dx+3 \int \log \left (\frac {x}{1-2 e^{x^2}}\right ) \, dx-6 \int \frac {x^2}{-1+2 e^{x^2}} \, dx\\ &=3 e^x-3 x-2 x^3+3 x \log \left (\frac {x}{1-2 e^{x^2}}\right )-3 \int \frac {1-e^{x^2} \left (2-4 x^2\right )}{1-2 e^{x^2}} \, dx-6 \int \frac {x^2}{-1+2 e^{x^2}} \, dx\\ &=3 e^x-3 x-2 x^3+3 x \log \left (\frac {x}{1-2 e^{x^2}}\right )-3 \int \left (1-2 x^2-\frac {2 x^2}{-1+2 e^{x^2}}\right ) \, dx-6 \int \frac {x^2}{-1+2 e^{x^2}} \, dx\\ &=3 e^x-6 x+3 x \log \left (\frac {x}{1-2 e^{x^2}}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 26, normalized size = 0.93 \begin {gather*} 3 e^x-6 x+3 x \log \left (\frac {x}{1-2 e^{x^2}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 25, normalized size = 0.89 \begin {gather*} 3 \, x \log \left (-\frac {x}{2 \, e^{\left (x^{2}\right )} - 1}\right ) - 6 \, x + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.22, size = 25, normalized size = 0.89 \begin {gather*} 3 \, x \log \left (-\frac {x}{2 \, e^{\left (x^{2}\right )} - 1}\right ) - 6 \, x + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.14, size = 26, normalized size = 0.93
method | result | size |
default | \(-6 x +3 x \ln \left (-\frac {x}{2 \,{\mathrm e}^{x^{2}}-1}\right )+3 \,{\mathrm e}^{x}\) | \(26\) |
risch | \(-3 x \ln \left ({\mathrm e}^{x^{2}}-\frac {1}{2}\right )+3 x \ln \relax (x )-\frac {3 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right )}{2}+\frac {3 i \pi x \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right )^{2}}{2}+\frac {3 i \pi x \,\mathrm {csgn}\left (\frac {i}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right ) \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right )^{2}}{2}-3 i \pi x \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right )^{2}+\frac {3 i \pi x \mathrm {csgn}\left (\frac {i x}{{\mathrm e}^{x^{2}}-\frac {1}{2}}\right )^{3}}{2}+3 i \pi x -3 x \ln \relax (2)-6 x +3 \,{\mathrm e}^{x}\) | \(166\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 25, normalized size = 0.89 \begin {gather*} 3 \, x \log \relax (x) - 3 \, x \log \left (-2 \, e^{\left (x^{2}\right )} + 1\right ) - 6 \, x + 3 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 27, normalized size = 0.96 \begin {gather*} 3\,{\mathrm {e}}^x-6\,x+3\,x\,\ln \left (-x\right )-3\,x\,\ln \left (2\,{\mathrm {e}}^{x^2}-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.51, size = 24, normalized size = 0.86 \begin {gather*} 3 x \log {\left (- \frac {x}{2 e^{x^{2}} - 1} \right )} - 6 x + 3 e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________