Optimal. Leaf size=19 \[ \frac {x+\log (x)+\log \left (x \left (3+\log \left (\frac {1}{3+x}\right )\right )\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 1.30, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {18+5 x+(6+2 x) \log \left (\frac {1}{3+x}\right )+\log (x) \left (-9-3 x+(-3-x) \log \left (\frac {1}{3+x}\right )\right )+\left (-9-3 x+(-3-x) \log \left (\frac {1}{3+x}\right )\right ) \log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{9 x^2+3 x^3+\left (3 x^2+x^3\right ) \log \left (\frac {1}{3+x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {18+5 x+(6+2 x) \log \left (\frac {1}{3+x}\right )+\log (x) \left (-9-3 x+(-3-x) \log \left (\frac {1}{3+x}\right )\right )+\left (-9-3 x+(-3-x) \log \left (\frac {1}{3+x}\right )\right ) \log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2 (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx\\ &=\int \left (\frac {18+5 x-9 \log (x)-3 x \log (x)+6 \log \left (\frac {1}{3+x}\right )+2 x \log \left (\frac {1}{3+x}\right )-3 \log (x) \log \left (\frac {1}{3+x}\right )-x \log (x) \log \left (\frac {1}{3+x}\right )}{x^2 (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )}-\frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2}\right ) \, dx\\ &=\int \frac {18+5 x-9 \log (x)-3 x \log (x)+6 \log \left (\frac {1}{3+x}\right )+2 x \log \left (\frac {1}{3+x}\right )-3 \log (x) \log \left (\frac {1}{3+x}\right )-x \log (x) \log \left (\frac {1}{3+x}\right )}{x^2 (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\int \frac {18+5 x+2 (3+x) \log \left (\frac {1}{3+x}\right )-(3+x) \log (x) \left (3+\log \left (\frac {1}{3+x}\right )\right )}{x^2 (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\int \left (\frac {2-\log (x)}{x^2}-\frac {1}{x (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )}\right ) \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\int \frac {2-\log (x)}{x^2} \, dx-\int \frac {1}{x (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {2-\log (x)}{x}-\int \left (\frac {1}{3 x \left (3+\log \left (\frac {1}{3+x}\right )\right )}-\frac {1}{3 (3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )}\right ) \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {2-\log (x)}{x}-\frac {1}{3} \int \frac {1}{x \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx+\frac {1}{3} \int \frac {1}{(3+x) \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {2-\log (x)}{x}-\frac {1}{3} \int \frac {1}{x \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx+\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x \left (3+\log \left (\frac {1}{x}\right )\right )} \, dx,x,3+x\right )-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {2-\log (x)}{x}-\frac {1}{3} \int \frac {1}{x \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\frac {1}{3} \operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,3+\log \left (\frac {1}{3+x}\right )\right )-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ &=\frac {1}{x}-\frac {2-\log (x)}{x}-\frac {1}{3} \log \left (3+\log \left (\frac {1}{3+x}\right )\right )-\frac {1}{3} \int \frac {1}{x \left (3+\log \left (\frac {1}{3+x}\right )\right )} \, dx-\int \frac {\log \left (3 x+x \log \left (\frac {1}{3+x}\right )\right )}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 22, normalized size = 1.16 \begin {gather*} \frac {\log (x)}{x}+\frac {\log \left (x \left (3+\log \left (\frac {1}{3+x}\right )\right )\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 20, normalized size = 1.05 \begin {gather*} \frac {\log \left (x \log \left (\frac {1}{x + 3}\right ) + 3 \, x\right ) + \log \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.04, size = 21, normalized size = 1.11 \begin {gather*} \frac {2 \, \log \relax (x)}{x} + \frac {\log \left (-\log \left (x + 3\right ) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.12, size = 140, normalized size = 7.37
method | result | size |
risch | \(\frac {\ln \left (\ln \left (3+x \right )-3\right )}{x}+\frac {-2 i \pi \mathrm {csgn}\left (i x \left (\ln \left (3+x \right )-3\right )\right )^{2}-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (\ln \left (3+x \right )-3\right )\right ) \mathrm {csgn}\left (i x \left (\ln \left (3+x \right )-3\right )\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x \left (\ln \left (3+x \right )-3\right )\right )^{2}+i \pi \,\mathrm {csgn}\left (i \left (\ln \left (3+x \right )-3\right )\right ) \mathrm {csgn}\left (i x \left (\ln \left (3+x \right )-3\right )\right )^{2}+i \pi \mathrm {csgn}\left (i x \left (\ln \left (3+x \right )-3\right )\right )^{3}+2 i \pi +4 \ln \relax (x )}{2 x}\) | \(140\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.40, size = 18, normalized size = 0.95 \begin {gather*} \frac {2 \, \log \relax (x) + \log \left (-\log \left (x + 3\right ) + 3\right )}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.07, size = 20, normalized size = 1.05 \begin {gather*} \frac {\ln \left (3\,x+x\,\ln \left (\frac {1}{x+3}\right )\right )+\ln \relax (x)}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.75, size = 19, normalized size = 1.00 \begin {gather*} \frac {\log {\relax (x )}}{x} + \frac {\log {\left (x \log {\left (\frac {1}{x + 3} \right )} + 3 x \right )}}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________