Optimal. Leaf size=37 \[ \frac {x}{3-\frac {1}{-2-e^x+\frac {4}{x}+\frac {-2+x}{x}-x}+\frac {5}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 4.44, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {40 x-28 x^2-42 x^3+12 x^4+18 x^5+3 x^6+e^{2 x} \left (10 x^3+3 x^4\right )+e^x \left (-40 x^2+8 x^3+27 x^4+7 x^5\right )}{100+20 x-179 x^2-78 x^3+75 x^4+54 x^5+9 x^6+e^{2 x} \left (25 x^2+30 x^3+9 x^4\right )+e^x \left (-100 x-70 x^2+84 x^3+84 x^4+18 x^5\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (40-4 \left (7+10 e^x\right ) x+2 \left (-21+4 e^x+5 e^{2 x}\right ) x^2+3 \left (4+9 e^x+e^{2 x}\right ) x^3+\left (18+7 e^x\right ) x^4+3 x^5\right )}{\left (10-\left (-1+5 e^x\right ) x-3 \left (3+e^x\right ) x^2-3 x^3\right )^2} \, dx\\ &=\int \left (\frac {x (10+3 x)}{(5+3 x)^2}+\frac {x^3 \left (-15+2 x+3 x^2\right )}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}-\frac {x^3 \left (-50-110 x-83 x^2+12 x^3+33 x^4+9 x^5\right )}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}\right ) \, dx\\ &=\int \frac {x (10+3 x)}{(5+3 x)^2} \, dx+\int \frac {x^3 \left (-15+2 x+3 x^2\right )}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )} \, dx-\int \frac {x^3 \left (-50-110 x-83 x^2+12 x^3+33 x^4+9 x^5\right )}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx\\ &=\frac {(10+3 x)^2}{9 (5+3 x)}-\int \left (\frac {4375}{729 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}-\frac {500 x}{243 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}+\frac {25 x^2}{81 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}-\frac {44 x^3}{27 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}-\frac {23 x^4}{9 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}+\frac {x^5}{3 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}+\frac {x^6}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}+\frac {15625}{243 (5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}-\frac {31250}{729 (5+3 x) \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2}\right ) \, dx+\int \left (\frac {100}{81 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}+\frac {10 x}{27 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}-\frac {8 x^2}{9 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}+\frac {x^3}{3 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}+\frac {1250}{27 (5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}-\frac {1250}{81 (5+3 x) \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )}\right ) \, dx\\ &=\frac {(10+3 x)^2}{9 (5+3 x)}-\frac {25}{81} \int \frac {x^2}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx-\frac {1}{3} \int \frac {x^5}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx+\frac {1}{3} \int \frac {x^3}{-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3} \, dx+\frac {10}{27} \int \frac {x}{-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3} \, dx-\frac {8}{9} \int \frac {x^2}{-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3} \, dx+\frac {100}{81} \int \frac {1}{-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3} \, dx+\frac {44}{27} \int \frac {x^3}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx+\frac {500}{243} \int \frac {x}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx+\frac {23}{9} \int \frac {x^4}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx-\frac {4375}{729} \int \frac {1}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx-\frac {1250}{81} \int \frac {1}{(5+3 x) \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )} \, dx+\frac {31250}{729} \int \frac {1}{(5+3 x) \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx+\frac {1250}{27} \int \frac {1}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )} \, dx-\frac {15625}{243} \int \frac {1}{(5+3 x)^2 \left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx-\int \frac {x^6}{\left (-10-x+5 e^x x+9 x^2+3 e^x x^2+3 x^3\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 57, normalized size = 1.54 \begin {gather*} \frac {x}{3}+\frac {25}{9 (5+3 x)}-\frac {x^4}{(5+3 x) \left (-10+\left (-1+5 e^x\right ) x+3 \left (3+e^x\right ) x^2+3 x^3\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.64, size = 68, normalized size = 1.84 \begin {gather*} \frac {9 \, x^{4} + 24 \, x^{3} + 27 \, x^{2} + {\left (9 \, x^{3} + 15 \, x^{2} + 25 \, x\right )} e^{x} - 5 \, x - 50}{9 \, {\left (3 \, x^{3} + 9 \, x^{2} + {\left (3 \, x^{2} + 5 \, x\right )} e^{x} - x - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.16, size = 70, normalized size = 1.89 \begin {gather*} \frac {9 \, x^{4} + 9 \, x^{3} e^{x} + 24 \, x^{3} + 15 \, x^{2} e^{x} + 27 \, x^{2} + 25 \, x e^{x} - 5 \, x - 50}{9 \, {\left (3 \, x^{3} + 3 \, x^{2} e^{x} + 9 \, x^{2} + 5 \, x e^{x} - x - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 53, normalized size = 1.43
method | result | size |
risch | \(\frac {x}{3}+\frac {25}{27 \left (x +\frac {5}{3}\right )}-\frac {x^{4}}{\left (3 x +5\right ) \left (3 \,{\mathrm e}^{x} x^{2}+3 x^{3}+5 \,{\mathrm e}^{x} x +9 x^{2}-x -10\right )}\) | \(53\) |
norman | \(\frac {x^{4}-5 x^{2}+\frac {x}{3}+{\mathrm e}^{x} x^{3}-{\mathrm e}^{x} x^{2}-\frac {5 \,{\mathrm e}^{x} x}{3}+\frac {10}{3}}{3 \,{\mathrm e}^{x} x^{2}+3 x^{3}+5 \,{\mathrm e}^{x} x +9 x^{2}-x -10}\) | \(62\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.43, size = 68, normalized size = 1.84 \begin {gather*} \frac {9 \, x^{4} + 24 \, x^{3} + 27 \, x^{2} + {\left (9 \, x^{3} + 15 \, x^{2} + 25 \, x\right )} e^{x} - 5 \, x - 50}{9 \, {\left (3 \, x^{3} + 9 \, x^{2} + {\left (3 \, x^{2} + 5 \, x\right )} e^{x} - x - 10\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {40\,x+{\mathrm {e}}^{2\,x}\,\left (3\,x^4+10\,x^3\right )+{\mathrm {e}}^x\,\left (7\,x^5+27\,x^4+8\,x^3-40\,x^2\right )-28\,x^2-42\,x^3+12\,x^4+18\,x^5+3\,x^6}{20\,x+{\mathrm {e}}^x\,\left (18\,x^5+84\,x^4+84\,x^3-70\,x^2-100\,x\right )+{\mathrm {e}}^{2\,x}\,\left (9\,x^4+30\,x^3+25\,x^2\right )-179\,x^2-78\,x^3+75\,x^4+54\,x^5+9\,x^6+100} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.35, size = 49, normalized size = 1.32 \begin {gather*} - \frac {x^{4}}{9 x^{4} + 42 x^{3} + 42 x^{2} - 35 x + \left (9 x^{3} + 30 x^{2} + 25 x\right ) e^{x} - 50} + \frac {x}{3} + \frac {25}{27 x + 45} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________