Optimal. Leaf size=27 \[ e^{5+e-x+x \left (\frac {4}{x}+2 x\right )+(-2+\log (2 x))^2} \]
________________________________________________________________________________________
Rubi [B] time = 0.30, antiderivative size = 55, normalized size of antiderivative = 2.04, number of steps used = 2, number of rules used = 2, integrand size = 42, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {12, 2288} \begin {gather*} \frac {e^{2 x^2-x+\log ^2(2 x)+e+13} \left (-4 x^2+x-2 \log (2 x)\right )}{16 x^5 \left (-4 x-\frac {2 \log (2 x)}{x}+1\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2288
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \frac {e^{13+e-x+2 x^2+\log ^2(2 x)} \left (-4-x+4 x^2+2 \log (2 x)\right )}{x^5} \, dx\\ &=\frac {e^{13+e-x+2 x^2+\log ^2(2 x)} \left (x-4 x^2-2 \log (2 x)\right )}{16 x^5 \left (1-4 x-\frac {2 \log (2 x)}{x}\right )}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 26, normalized size = 0.96 \begin {gather*} \frac {e^{13+e-x+2 x^2+\log ^2(2 x)}}{16 x^4} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.97, size = 25, normalized size = 0.93 \begin {gather*} e^{\left (2 \, x^{2} + \log \left (2 \, x\right )^{2} - x + e - 4 \, \log \left (2 \, x\right ) + 13\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 25, normalized size = 0.93 \begin {gather*} e^{\left (2 \, x^{2} + \log \left (2 \, x\right )^{2} - x + e - 4 \, \log \left (2 \, x\right ) + 13\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.93
method | result | size |
risch | \(\frac {{\mathrm e}^{\ln \left (2 x \right )^{2}+13+{\mathrm e}+2 x^{2}-x}}{16 x^{4}}\) | \(25\) |
norman | \({\mathrm e}^{\ln \left (2 x \right )^{2}-4 \ln \left (2 x \right )+{\mathrm e}+2 x^{2}-x +13}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.55, size = 32, normalized size = 1.19 \begin {gather*} \frac {e^{\left (2 \, x^{2} + \log \relax (2)^{2} + 2 \, \log \relax (2) \log \relax (x) + \log \relax (x)^{2} - x + e + 13\right )}}{16 \, x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.44, size = 35, normalized size = 1.30 \begin {gather*} \frac {x^{2\,\ln \relax (2)-4}\,{\mathrm {e}}^{{\ln \relax (2)}^2}\,{\mathrm {e}}^{-x}\,{\mathrm {e}}^{13}\,{\mathrm {e}}^{2\,x^2}\,{\mathrm {e}}^{{\ln \relax (x)}^2}\,{\mathrm {e}}^{\mathrm {e}}}{16} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.30, size = 24, normalized size = 0.89 \begin {gather*} \frac {e^{2 x^{2} - x + \log {\left (2 x \right )}^{2} + e + 13}}{16 x^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________