Optimal. Leaf size=30 \[ 3 x \log \left (-e^{4+x}+\frac {60 (4+x)}{x-\log \left (\frac {x}{\log (5)}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.08, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-720+540 x+3 e^{4+x} x^3+\left (180 x-6 e^{4+x} x^2\right ) \log \left (\frac {x}{\log (5)}\right )+3 e^{4+x} x \log ^2\left (\frac {x}{\log (5)}\right )+\left (-720 x-180 x^2+3 e^{4+x} x^2+\left (720+180 x-6 e^{4+x} x\right ) \log \left (\frac {x}{\log (5)}\right )+3 e^{4+x} \log ^2\left (\frac {x}{\log (5)}\right )\right ) \log \left (\frac {-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{-x+\log \left (\frac {x}{\log (5)}\right )}\right )}{-240 x-60 x^2+e^{4+x} x^2+\left (240+60 x-2 e^{4+x} x\right ) \log \left (\frac {x}{\log (5)}\right )+e^{4+x} \log ^2\left (\frac {x}{\log (5)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {720-540 x-3 e^{4+x} x^3-\left (180 x-6 e^{4+x} x^2\right ) \log \left (\frac {x}{\log (5)}\right )-3 e^{4+x} x \log ^2\left (\frac {x}{\log (5)}\right )-\left (-720 x-180 x^2+3 e^{4+x} x^2+\left (720+180 x-6 e^{4+x} x\right ) \log \left (\frac {x}{\log (5)}\right )+3 e^{4+x} \log ^2\left (\frac {x}{\log (5)}\right )\right ) \log \left (\frac {-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{-x+\log \left (\frac {x}{\log (5)}\right )}\right )}{\left (240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=\int \left (\frac {180 \left (-4+3 x+4 x^2+x^3-3 x \log \left (\frac {x}{\log (5)}\right )-x^2 \log \left (\frac {x}{\log (5)}\right )\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+3 \left (x+\log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )\right )\right ) \, dx\\ &=3 \int \left (x+\log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )\right ) \, dx+180 \int \frac {-4+3 x+4 x^2+x^3-3 x \log \left (\frac {x}{\log (5)}\right )-x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=\frac {3 x^2}{2}+3 \int \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right ) \, dx+180 \int \left (-\frac {4}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {3 x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {4 x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}-\frac {3 x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}-\frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}\right ) \, dx\\ &=\frac {3 x^2}{2}+3 x \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )-3 \int \frac {-240+e^{4+x} x^3+e^{4+x} x \log ^2(x)+2 e^{4+x} x^2 \log (\log (5))+x \left (180-60 \log (\log (5))+e^{4+x} \log ^2(\log (5))\right )-2 x \log (x) \left (-30+e^{4+x} (x+\log (\log (5)))\right )}{\left (-240+\left (-60+e^{4+x}\right ) x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+180 \int \frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+540 \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-540 \int \frac {x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-720 \int \frac {1}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+720 \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=\frac {3 x^2}{2}+3 x \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )-3 \int \left (x+\frac {60 \left (4-x^3+3 x \log (x)+x^2 \log (x)-4 x^2 \left (1+\frac {1}{4} \log (\log (5))\right )-3 x (1+\log (\log (5)))\right )}{\left (240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}\right ) \, dx+180 \int \frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+540 \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-540 \int \frac {x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-720 \int \frac {1}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+720 \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=3 x \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )+180 \int \frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {4-x^3+3 x \log (x)+x^2 \log (x)-4 x^2 \left (1+\frac {1}{4} \log (\log (5))\right )-3 x (1+\log (\log (5)))}{\left (240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+540 \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-540 \int \frac {x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-720 \int \frac {1}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+720 \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=3 x \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )+180 \int \frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \left (-\frac {4}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {x^3}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}-\frac {3 x \log (x)}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}-\frac {x^2 \log (x)}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {3 x (1+\log (\log (5)))}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}+\frac {x^2 (4+\log (\log (5)))}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))}\right ) \, dx+540 \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-540 \int \frac {x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-720 \int \frac {1}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+720 \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ &=3 x \log \left (\frac {240+60 x-e^{4+x} x+e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{x-\log (x)+\log (\log (5))}\right )+180 \int \frac {x^2 \log (x)}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-180 \int \frac {x^2 \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+540 \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+540 \int \frac {x \log (x)}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-540 \int \frac {x \log \left (\frac {x}{\log (5)}\right )}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx+720 \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-(540 (1+\log (\log (5)))) \int \frac {x}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx-(180 (4+\log (\log (5)))) \int \frac {x^2}{\left (-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )\right ) (x-\log (x)+\log (\log (5)))} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 1.84, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {-720+540 x+3 e^{4+x} x^3+\left (180 x-6 e^{4+x} x^2\right ) \log \left (\frac {x}{\log (5)}\right )+3 e^{4+x} x \log ^2\left (\frac {x}{\log (5)}\right )+\left (-720 x-180 x^2+3 e^{4+x} x^2+\left (720+180 x-6 e^{4+x} x\right ) \log \left (\frac {x}{\log (5)}\right )+3 e^{4+x} \log ^2\left (\frac {x}{\log (5)}\right )\right ) \log \left (\frac {-240-60 x+e^{4+x} x-e^{4+x} \log \left (\frac {x}{\log (5)}\right )}{-x+\log \left (\frac {x}{\log (5)}\right )}\right )}{-240 x-60 x^2+e^{4+x} x^2+\left (240+60 x-2 e^{4+x} x\right ) \log \left (\frac {x}{\log (5)}\right )+e^{4+x} \log ^2\left (\frac {x}{\log (5)}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 43, normalized size = 1.43 \begin {gather*} 3 \, x \log \left (-\frac {x e^{\left (x + 4\right )} - e^{\left (x + 4\right )} \log \left (\frac {x}{\log \relax (5)}\right ) - 60 \, x - 240}{x - \log \left (\frac {x}{\log \relax (5)}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.49, size = 46, normalized size = 1.53 \begin {gather*} 3 \, x \log \left (-x e^{\left (x + 4\right )} + e^{\left (x + 4\right )} \log \relax (x) - e^{\left (x + 4\right )} \log \left (\log \relax (5)\right ) + 60 \, x + 240\right ) - 3 \, x \log \left (x - \log \relax (x) + \log \left (\log \relax (5)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.23, size = 370, normalized size = 12.33
method | result | size |
risch | \(3 x \ln \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )-3 x \ln \left (-\ln \left (\frac {x}{\ln \relax (5)}\right )+x \right )-3 i \pi x \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right )^{2}-\frac {3 i \pi x \,\mathrm {csgn}\left (\frac {i}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right ) \mathrm {csgn}\left (i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right )}{2}+\frac {3 i \pi x \,\mathrm {csgn}\left (\frac {i}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right )^{2}}{2}+\frac {3 i \pi x \,\mathrm {csgn}\left (i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )\right ) \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right )^{2}}{2}+\frac {3 i \pi x \mathrm {csgn}\left (\frac {i \left (\left ({\mathrm e}^{4+x}-60\right ) x -{\mathrm e}^{4+x} \ln \left (\frac {x}{\ln \relax (5)}\right )-240\right )}{-\ln \left (\frac {x}{\ln \relax (5)}\right )+x}\right )^{3}}{2}+3 i \pi x\) | \(370\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 45, normalized size = 1.50 \begin {gather*} 3 \, x \log \left (-{\left (x e^{4} + e^{4} \log \left (\log \relax (5)\right )\right )} e^{x} + e^{\left (x + 4\right )} \log \relax (x) + 60 \, x + 240\right ) - 3 \, x \log \left (x - \log \relax (x) + \log \left (\log \relax (5)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.78, size = 42, normalized size = 1.40 \begin {gather*} 3\,x\,\ln \left (\frac {60\,x-x\,{\mathrm {e}}^4\,{\mathrm {e}}^x+\ln \left (\frac {x}{\ln \relax (5)}\right )\,{\mathrm {e}}^4\,{\mathrm {e}}^x+240}{x-\ln \left (\frac {x}{\ln \relax (5)}\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 4.56, size = 36, normalized size = 1.20 \begin {gather*} 3 x \log {\left (\frac {x e^{x + 4} - 60 x - e^{x + 4} \log {\left (\frac {x}{\log {\relax (5 )}} \right )} - 240}{- x + \log {\left (\frac {x}{\log {\relax (5 )}} \right )}} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________