Optimal. Leaf size=22 \[ 4 \left (5-2 x+\frac {25 e^{e^4} x^2}{-2+x}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 27, normalized size of antiderivative = 1.23, number of steps used = 3, number of rules used = 2, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.056, Rules used = {27, 1850} \begin {gather*} -4 \left (2-25 e^{e^4}\right ) x-\frac {400 e^{e^4}}{2-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 27
Rule 1850
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-32+32 x-8 x^2+e^{e^4} \left (-400 x+100 x^2\right )}{(-2+x)^2} \, dx\\ &=\int \left (4 \left (-2+25 e^{e^4}\right )-\frac {400 e^{e^4}}{(-2+x)^2}\right ) \, dx\\ &=-\frac {400 e^{e^4}}{2-x}-4 \left (2-25 e^{e^4}\right ) x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 28, normalized size = 1.27 \begin {gather*} 4 \left (\frac {100 e^{e^4}}{-2+x}+\left (-2+25 e^{e^4}\right ) (-2+x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 29, normalized size = 1.32 \begin {gather*} -\frac {4 \, {\left (2 \, x^{2} - 25 \, {\left (x^{2} - 2 \, x + 4\right )} e^{\left (e^{4}\right )} - 4 \, x\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.91 \begin {gather*} 100 \, x e^{\left (e^{4}\right )} - 8 \, x + \frac {400 \, e^{\left (e^{4}\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 20, normalized size = 0.91
method | result | size |
norman | \(\frac {\left (100 \,{\mathrm e}^{{\mathrm e}^{4}}-8\right ) x^{2}+32}{x -2}\) | \(20\) |
default | \(100 x \,{\mathrm e}^{{\mathrm e}^{4}}-8 x +\frac {400 \,{\mathrm e}^{{\mathrm e}^{4}}}{x -2}\) | \(21\) |
risch | \(100 x \,{\mathrm e}^{{\mathrm e}^{4}}-8 x +\frac {400 \,{\mathrm e}^{{\mathrm e}^{4}}}{x -2}\) | \(21\) |
gosper | \(\frac {100 x^{2} {\mathrm e}^{{\mathrm e}^{4}}-8 x^{2}+32}{x -2}\) | \(23\) |
meijerg | \(-\frac {8 x}{1-\frac {x}{2}}-2 \left (100 \,{\mathrm e}^{{\mathrm e}^{4}}-8\right ) \left (-\frac {x \left (-\frac {3 x}{2}+6\right )}{6 \left (1-\frac {x}{2}\right )}-2 \ln \left (1-\frac {x}{2}\right )\right )-2 \left (200 \,{\mathrm e}^{{\mathrm e}^{4}}-16\right ) \left (\frac {x}{2-x}+\ln \left (1-\frac {x}{2}\right )\right )\) | \(71\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 21, normalized size = 0.95 \begin {gather*} 4 \, x {\left (25 \, e^{\left (e^{4}\right )} - 2\right )} + \frac {400 \, e^{\left (e^{4}\right )}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.14, size = 20, normalized size = 0.91 \begin {gather*} x\,\left (100\,{\mathrm {e}}^{{\mathrm {e}}^4}-8\right )+\frac {400\,{\mathrm {e}}^{{\mathrm {e}}^4}}{x-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 19, normalized size = 0.86 \begin {gather*} - x \left (8 - 100 e^{e^{4}}\right ) + \frac {400 e^{e^{4}}}{x - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________