Optimal. Leaf size=23 \[ \left (81 e^{-2 \left (x+\log ^2(5)\right )^2}+x-x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 1.44, antiderivative size = 118, normalized size of antiderivative = 5.13, number of steps used = 14, number of rules used = 8, integrand size = 119, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {6688, 12, 6742, 74, 2209, 2226, 2212, 2205} \begin {gather*} (1-x)^2 x^2+6561 e^{-4 \left (x+\log ^2(5)\right )^2}-81 e^{-2 \left (x+\log ^2(5)\right )^2}-162 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^2+162 \left (1+2 \log ^2(5)\right ) e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )+81 \left (1-2 \log ^4(5)-2 \log ^2(5)\right ) e^{-2 \left (x+\log ^2(5)\right )^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 74
Rule 2205
Rule 2209
Rule 2212
Rule 2226
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int 2 e^{-4 \left (x+\log ^2(5)\right )^2} \left (81-e^{2 \left (x+\log ^2(5)\right )^2} (-1+x) x\right ) \left (-e^{2 \left (x+\log ^2(5)\right )^2} (-1+2 x)-324 \left (x+\log ^2(5)\right )\right ) \, dx\\ &=2 \int e^{-4 \left (x+\log ^2(5)\right )^2} \left (81-e^{2 \left (x+\log ^2(5)\right )^2} (-1+x) x\right ) \left (-e^{2 \left (x+\log ^2(5)\right )^2} (-1+2 x)-324 \left (x+\log ^2(5)\right )\right ) \, dx\\ &=2 \int \left ((-1+x) x (-1+2 x)-26244 e^{-4 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )+81 e^{-2 \left (x+\log ^2(5)\right )^2} \left (1+4 x^3-4 x^2 \left (1-\log ^2(5)\right )-2 x \left (1+2 \log ^2(5)\right )\right )\right ) \, dx\\ &=2 \int (-1+x) x (-1+2 x) \, dx+162 \int e^{-2 \left (x+\log ^2(5)\right )^2} \left (1+4 x^3-4 x^2 \left (1-\log ^2(5)\right )-2 x \left (1+2 \log ^2(5)\right )\right ) \, dx-52488 \int e^{-4 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \, dx\\ &=6561 e^{-4 \left (x+\log ^2(5)\right )^2}+(1-x)^2 x^2+162 \int \left (4 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^3+e^{-2 \left (x+\log ^2(5)\right )^2} \left (1+2 \log ^2(5)\right )-4 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^2 \left (1+2 \log ^2(5)\right )+2 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \left (-1+2 \log ^2(5)+2 \log ^4(5)\right )\right ) \, dx\\ &=6561 e^{-4 \left (x+\log ^2(5)\right )^2}+(1-x)^2 x^2+648 \int e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^3 \, dx+\left (162 \left (1+2 \log ^2(5)\right )\right ) \int e^{-2 \left (x+\log ^2(5)\right )^2} \, dx-\left (648 \left (1+2 \log ^2(5)\right )\right ) \int e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^2 \, dx-\left (324 \left (1-2 \log ^2(5)-2 \log ^4(5)\right )\right ) \int e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \, dx\\ &=6561 e^{-4 \left (x+\log ^2(5)\right )^2}+(1-x)^2 x^2-162 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^2+81 \sqrt {\frac {\pi }{2}} \text {erf}\left (\sqrt {2} \left (x+\log ^2(5)\right )\right ) \left (1+2 \log ^2(5)\right )+162 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \left (1+2 \log ^2(5)\right )+81 e^{-2 \left (x+\log ^2(5)\right )^2} \left (1-2 \log ^2(5)-2 \log ^4(5)\right )+324 \int e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \, dx-\left (162 \left (1+2 \log ^2(5)\right )\right ) \int e^{-2 \left (x+\log ^2(5)\right )^2} \, dx\\ &=6561 e^{-4 \left (x+\log ^2(5)\right )^2}-81 e^{-2 \left (x+\log ^2(5)\right )^2}+(1-x)^2 x^2-162 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right )^2+162 e^{-2 \left (x+\log ^2(5)\right )^2} \left (x+\log ^2(5)\right ) \left (1+2 \log ^2(5)\right )+81 e^{-2 \left (x+\log ^2(5)\right )^2} \left (1-2 \log ^2(5)-2 \log ^4(5)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.41, size = 34, normalized size = 1.48 \begin {gather*} e^{-4 \left (x+\log ^2(5)\right )^2} \left (-81+e^{2 \left (x+\log ^2(5)\right )^2} (-1+x) x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.66, size = 85, normalized size = 3.70 \begin {gather*} {\left ({\left (x^{4} - 2 \, x^{3} + x^{2}\right )} e^{\left (4 \, \log \relax (5)^{4} + 8 \, x \log \relax (5)^{2} + 4 \, x^{2}\right )} - 162 \, {\left (x^{2} - x\right )} e^{\left (2 \, \log \relax (5)^{4} + 4 \, x \log \relax (5)^{2} + 2 \, x^{2}\right )} + 6561\right )} e^{\left (-4 \, \log \relax (5)^{4} - 8 \, x \log \relax (5)^{2} - 4 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 82, normalized size = 3.57 \begin {gather*} x^{4} - 2 \, x^{3} - 162 \, x^{2} e^{\left (-2 \, \log \relax (5)^{4} - 4 \, x \log \relax (5)^{2} - 2 \, x^{2}\right )} + x^{2} + 162 \, x e^{\left (-2 \, \log \relax (5)^{4} - 4 \, x \log \relax (5)^{2} - 2 \, x^{2}\right )} + 6561 \, e^{\left (-4 \, \log \relax (5)^{4} - 8 \, x \log \relax (5)^{2} - 4 \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.09, size = 47, normalized size = 2.04
method | result | size |
risch | \(x^{4}-2 x^{3}+x^{2}+\left (-162 x^{2}+162 x \right ) {\mathrm e}^{-2 \left (\ln \relax (5)^{2}+x \right )^{2}}+6561 \,{\mathrm e}^{-4 \left (\ln \relax (5)^{2}+x \right )^{2}}\) | \(47\) |
default | \(x^{4}-2 x^{3}+x^{2}+6561 \,{\mathrm e}^{-4 \ln \relax (5)^{4}-8 x \ln \relax (5)^{2}-4 x^{2}}+162 x \,{\mathrm e}^{-2 \ln \relax (5)^{4}-4 x \ln \relax (5)^{2}-2 x^{2}}-162 x^{2} {\mathrm e}^{-2 \ln \relax (5)^{4}-4 x \ln \relax (5)^{2}-2 x^{2}}\) | \(83\) |
norman | \(\left (6561+x^{4} {\mathrm e}^{4 \ln \relax (5)^{4}+8 x \ln \relax (5)^{2}+4 x^{2}}+{\mathrm e}^{4 \ln \relax (5)^{4}+8 x \ln \relax (5)^{2}+4 x^{2}} x^{2}+162 \,{\mathrm e}^{2 \ln \relax (5)^{4}+4 x \ln \relax (5)^{2}+2 x^{2}} x -162 \,{\mathrm e}^{2 \ln \relax (5)^{4}+4 x \ln \relax (5)^{2}+2 x^{2}} x^{2}-2 \,{\mathrm e}^{4 \ln \relax (5)^{4}+8 x \ln \relax (5)^{2}+4 x^{2}} x^{3}\right ) {\mathrm e}^{-4 \ln \relax (5)^{4}-8 x \ln \relax (5)^{2}-4 x^{2}}\) | \(133\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.66, size = 565, normalized size = 24.57 result too large to display
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.44, size = 82, normalized size = 3.57 \begin {gather*} 6561\,{\mathrm {e}}^{-4\,x^2-8\,{\ln \relax (5)}^2\,x-4\,{\ln \relax (5)}^4}-162\,x^2\,{\mathrm {e}}^{-2\,x^2-4\,{\ln \relax (5)}^2\,x-2\,{\ln \relax (5)}^4}+162\,x\,{\mathrm {e}}^{-2\,x^2-4\,{\ln \relax (5)}^2\,x-2\,{\ln \relax (5)}^4}+x^2-2\,x^3+x^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.22, size = 68, normalized size = 2.96 \begin {gather*} x^{4} - 2 x^{3} + x^{2} + \left (- 162 x^{2} + 162 x\right ) e^{- 2 x^{2} - 4 x \log {\relax (5 )}^{2} - 2 \log {\relax (5 )}^{4}} + 6561 e^{- 4 x^{2} - 8 x \log {\relax (5 )}^{2} - 4 \log {\relax (5 )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________