3.85.12
Optimal. Leaf size=25
________________________________________________________________________________________
Rubi [B] time = 0.40, antiderivative size = 285, normalized size of antiderivative = 11.40,
number of steps used = 8, number of rules used = 4, integrand size = 148, = 0.027, Rules used
= {2074, 203, 639, 199}
Antiderivative was successfully verified.
[In]
Int[(338*x^3 - 1066*x^4 + 1170*x^5 - 472*x^6 + 28*x^7 + (-338*x + 1170*x^2 - 1394*x^3 + 652*x^4 - 96*x^5 + 4*x
^6)*Log[2])/(-x^6 + 3*x^7 - 3*x^8 + x^9 + (-3*x^4 + 9*x^5 - 9*x^6 + 3*x^7)*Log[2] + (-3*x^2 + 9*x^3 - 9*x^4 +
3*x^5)*Log[2]^2 + (-1 + 3*x - 3*x^2 + x^3)*Log[2]^3),x]
[Out]
1/((1 - x)^2*(1 + Log[2])^2) + (3*ArcTan[x/Sqrt[Log[2]]]*(2 + Log[2])*(13 + 14*Log[2]))/(Sqrt[Log[2]]*(1 + Log
[2])^2) + (3*x*(2 + Log[2])*(13 + 14*Log[2]))/((1 + Log[2])^2*(x^2 + Log[2])) + (4*ArcTan[x/Sqrt[Log[2]]]*(13
+ 28*Log[2] + 21*Log[2]^2 + 7*Log[2]^3))/(Sqrt[Log[2]]*(1 + Log[2])^3) - (ArcTan[x/Sqrt[Log[2]]]*(130 + 313*Lo
g[2] + 249*Log[2]^2 + 70*Log[2]^3))/(Sqrt[Log[2]]*(1 + Log[2])^3) - (Log[2]*(169 + 360*Log[2] + 192*Log[2]^2 -
Log[2]^3 - 2*x*(2 + Log[2])*(13 + 14*Log[2])))/((1 + Log[2])^2*(x^2 + Log[2])^2) + (169 + 551*Log[2] + 576*Lo
g[2]^2 + 188*Log[2]^3 - 2*Log[2]^4 - x*(130 + 313*Log[2] + 249*Log[2]^2 + 70*Log[2]^3))/((1 + Log[2])^3*(x^2 +
Log[2])) - (4*(6 + Log[128]))/((1 - x)*(1 + Log[2])^3)
Rule 199
Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[(x*(a + b*x^n)^(p + 1))/(a*n*(p + 1)), x] + Dist[(n*(p +
1) + 1)/(a*n*(p + 1)), Int[(a + b*x^n)^(p + 1), x], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[p, -1] && (In
tegerQ[2*p] || (n == 2 && IntegerQ[4*p]) || (n == 2 && IntegerQ[3*p]) || Denominator[p + 1/n] < Denominator[p]
)
Rule 203
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])
Rule 639
Int[((d_) + (e_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Simp[((a*e - c*d*x)*(a + c*x^2)^(p + 1))/(2*a
*c*(p + 1)), x] + Dist[(d*(2*p + 3))/(2*a*(p + 1)), Int[(a + c*x^2)^(p + 1), x], x] /; FreeQ[{a, c, d, e}, x]
&& LtQ[p, -1] && NeQ[p, -3/2]
Rule 2074
Int[(P_)^(p_)*(Q_)^(q_.), x_Symbol] :> With[{PP = Factor[P]}, Int[ExpandIntegrand[PP^p*Q^q, x], x] /; !SumQ[N
onfreeFactors[PP, x]]] /; FreeQ[q, x] && PolyQ[P, x] && PolyQ[Q, x] && IntegerQ[p] && NeQ[P, x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.31, size = 465, normalized size = 18.60
Antiderivative was successfully verified.
[In]
Integrate[(338*x^3 - 1066*x^4 + 1170*x^5 - 472*x^6 + 28*x^7 + (-338*x + 1170*x^2 - 1394*x^3 + 652*x^4 - 96*x^5
+ 4*x^6)*Log[2])/(-x^6 + 3*x^7 - 3*x^8 + x^9 + (-3*x^4 + 9*x^5 - 9*x^6 + 3*x^7)*Log[2] + (-3*x^2 + 9*x^3 - 9*
x^4 + 3*x^5)*Log[2]^2 + (-1 + 3*x - 3*x^2 + x^3)*Log[2]^3),x]
[Out]
-1/4*(2*Log[2]^2*(Log[2]^3*(1652 - 374*Log[4]) + Log[2]^4*(760 - 22*Log[4]) + 360*Log[4] + Log[2]^5*(52 + Log[
4]) + 9*Log[2]*(-80 + 9*Log[4]) - 2*Log[2]^2*(80 + 411*Log[4])) + x^3*(24*Log[2]^7 + Log[2]*(3024 - 2841*Log[4
]) + Log[2]^6*(1222 - 20*Log[4]) - 1512*Log[4] + 34*Log[2]^2*(213 + 94*Log[4]) + Log[2]^5*(-448 + 137*Log[4])
+ 16*Log[2]^4*(-437 + 206*Log[4]) + 8*Log[2]^3*(-21 + 1018*Log[4])) + 2*x^2*Log[2]*(Log[2]^3*(10494 - 3313*Log
[4]) + Log[2]^4*(5306 - 247*Log[4]) - 8*Log[2]^5*(-23 + Log[4]) + 2520*Log[4] + Log[2]^6*(28 + Log[4]) + Log[2
]*(-5378 + 543*Log[4]) - 2*Log[2]^2*(1217 + 3126*Log[4])) + x^5*(88*Log[2]^6 + Log[2]*(3024 - 321*Log[4]) - 15
12*Log[4] + 2*Log[2]^5*(53 + 6*Log[4]) + 9*Log[2]^4*(-374 + 19*Log[4]) + Log[2]^3*(-7094 + 2019*Log[4]) + Log[
2]^2*(754 + 3771*Log[4])) + x*Log[2]*(-2520*Log[4] - 4*Log[2]^6*(46 + Log[4]) - 15*Log[2]*(-336 + 89*Log[4]) +
Log[2]^4*(-10778 + 1325*Log[4]) + 3*Log[2]^2*(890 + 2043*Log[4]) + Log[2]^3*(-12266 + 5373*Log[4]) + 38*Log[2
]^5*(-71 + Log[16])) + 2*x^4*(Log[2]^3*(5542 - 2011*Log[4]) + 2*Log[2]^6*(-238 + Log[4]) + 1512*Log[4] - 3*Log
[2]^4*(-346 + 53*Log[4]) + Log[2]*(-3024 + 321*Log[4]) - Log[2]^2*(1142 + 3769*Log[4]) - 2*Log[2]^5*(829 + Log
[16])))/((-1 + x)^2*Log[2]^2*(1 + Log[2])^4*(x^2 + Log[2])^2)
________________________________________________________________________________________
fricas [B] time = 0.59, size = 95, normalized size = 3.80
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^6-96*x^5+652*x^4-1394*x^3+1170*x^2-338*x)*log(2)+28*x^7-472*x^6+1170*x^5-1066*x^4+338*x^3)/((x
^3-3*x^2+3*x-1)*log(2)^3+(3*x^5-9*x^4+9*x^3-3*x^2)*log(2)^2+(3*x^7-9*x^6+9*x^5-3*x^4)*log(2)+x^9-3*x^8+3*x^7-x
^6),x, algorithm="fricas")
[Out]
-(28*x^5 - 250*x^4 + 390*x^3 + (x^2 - 2*x + 1)*log(2)^2 - 169*x^2 + 2*(x^4 - 2*x^3 + x^2)*log(2))/(x^6 - 2*x^5
+ x^4 + (x^2 - 2*x + 1)*log(2)^2 + 2*(x^4 - 2*x^3 + x^2)*log(2))
________________________________________________________________________________________
giac [B] time = 0.25, size = 82, normalized size = 3.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^6-96*x^5+652*x^4-1394*x^3+1170*x^2-338*x)*log(2)+28*x^7-472*x^6+1170*x^5-1066*x^4+338*x^3)/((x
^3-3*x^2+3*x-1)*log(2)^3+(3*x^5-9*x^4+9*x^3-3*x^2)*log(2)^2+(3*x^7-9*x^6+9*x^5-3*x^4)*log(2)+x^9-3*x^8+3*x^7-x
^6),x, algorithm="giac")
[Out]
-(28*x^5 + 2*x^4*log(2) - 250*x^4 - 4*x^3*log(2) + x^2*log(2)^2 + 390*x^3 + 2*x^2*log(2) - 2*x*log(2)^2 - 169*
x^2 + log(2)^2)/(x^3 - x^2 + x*log(2) - log(2))^2
________________________________________________________________________________________
maple [B] time = 0.22, size = 70, normalized size = 2.80
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
gosper |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((4*x^6-96*x^5+652*x^4-1394*x^3+1170*x^2-338*x)*ln(2)+28*x^7-472*x^6+1170*x^5-1066*x^4+338*x^3)/((x^3-3*x^
2+3*x-1)*ln(2)^3+(3*x^5-9*x^4+9*x^3-3*x^2)*ln(2)^2+(3*x^7-9*x^6+9*x^5-3*x^4)*ln(2)+x^9-3*x^8+3*x^7-x^6),x,meth
od=_RETURNVERBOSE)
[Out]
(-28*x^5+2*x*ln(2)^2+(4*ln(2)-390)*x^3+(-2*ln(2)+250)*x^4+(-ln(2)^2-2*ln(2)+169)*x^2-ln(2)^2)/(x-1)^2/(ln(2)+x
^2)^2
________________________________________________________________________________________
maxima [B] time = 0.37, size = 105, normalized size = 4.20
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x^6-96*x^5+652*x^4-1394*x^3+1170*x^2-338*x)*log(2)+28*x^7-472*x^6+1170*x^5-1066*x^4+338*x^3)/((x
^3-3*x^2+3*x-1)*log(2)^3+(3*x^5-9*x^4+9*x^3-3*x^2)*log(2)^2+(3*x^7-9*x^6+9*x^5-3*x^4)*log(2)+x^9-3*x^8+3*x^7-x
^6),x, algorithm="maxima")
[Out]
-(28*x^5 + 2*x^4*(log(2) - 125) - 2*x^3*(2*log(2) - 195) + (log(2)^2 + 2*log(2) - 169)*x^2 - 2*x*log(2)^2 + lo
g(2)^2)/(x^6 - 2*x^5 + x^4*(2*log(2) + 1) - 4*x^3*log(2) + (log(2)^2 + 2*log(2))*x^2 - 2*x*log(2)^2 + log(2)^2
)
________________________________________________________________________________________
mupad [F(-1)] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((log(2)*(338*x - 1170*x^2 + 1394*x^3 - 652*x^4 + 96*x^5 - 4*x^6) - 338*x^3 + 1066*x^4 - 1170*x^5 + 472*x^6
- 28*x^7)/(log(2)*(3*x^4 - 9*x^5 + 9*x^6 - 3*x^7) + log(2)^2*(3*x^2 - 9*x^3 + 9*x^4 - 3*x^5) - log(2)^3*(3*x
- 3*x^2 + x^3 - 1) + x^6 - 3*x^7 + 3*x^8 - x^9),x)
[Out]
\text{Hanged}
________________________________________________________________________________________
sympy [B] time = 8.40, size = 107, normalized size = 4.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((4*x**6-96*x**5+652*x**4-1394*x**3+1170*x**2-338*x)*ln(2)+28*x**7-472*x**6+1170*x**5-1066*x**4+338*
x**3)/((x**3-3*x**2+3*x-1)*ln(2)**3+(3*x**5-9*x**4+9*x**3-3*x**2)*ln(2)**2+(3*x**7-9*x**6+9*x**5-3*x**4)*ln(2)
+x**9-3*x**8+3*x**7-x**6),x)
[Out]
(-28*x**5 + x**4*(250 - 2*log(2)) + x**3*(-390 + 4*log(2)) + x**2*(-2*log(2) - log(2)**2 + 169) + 2*x*log(2)**
2 - log(2)**2)/(x**6 - 2*x**5 + x**4*(1 + 2*log(2)) - 4*x**3*log(2) + x**2*(log(2)**2 + 2*log(2)) - 2*x*log(2)
**2 + log(2)**2)
________________________________________________________________________________________