3.85.14 3072+2432x+268x2+8x3+eex/4(64+ex/4(16xx2))1024+128x+4x2dx

Optimal. Leaf size=29 e4+3x+x2eex/4x16+x

________________________________________________________________________________________

Rubi [F]  time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 3072+2432x+268x2+8x3+eex/4(64+ex/4(16xx2))1024+128x+4x2dx

Verification is not applicable to the result.

[In]

Int[(3072 + 2432*x + 268*x^2 + 8*x^3 + E^E^(x/4)*(-64 + E^(x/4)*(-16*x - x^2)))/(1024 + 128*x + 4*x^2),x]

[Out]

-E^E^(x/4) + 3*x + x^2 - 16*Defer[Int][E^E^(x/4)/(16 + x)^2, x] + 4*Defer[Int][E^((4*E^(x/4) + x)/4)/(16 + x),
 x]

Rubi steps

integral=3072+2432x+268x2+8x3+eex/4(64+ex/4(16xx2))4(16+x)2dx=143072+2432x+268x2+8x3+eex/4(64+ex/4(16xx2))(16+x)2dx=14(e14(4ex/4+x)x16x+3072(16+x)264eex/4(16+x)2+2432x(16+x)2+268x2(16+x)2+8x3(16+x)2)dx=76816+x+14e14(4ex/4+x)x16xdx+2x3(16+x)2dx16eex/4(16+x)2dx+67x2(16+x)2dx+608x(16+x)2dx=76816+x+14(e14(4ex/4+x)+16e14(4ex/4+x)16+x)dx+2(32+x4096(16+x)2+76816+x)dx16eex/4(16+x)2dx+67(1+256(16+x)23216+x)dx+608(16(16+x)2+116+x)dx=3x+x214e14(4ex/4+x)dx+4e14(4ex/4+x)16+xdx16eex/4(16+x)2dx=3x+x2+4e14(4ex/4+x)16+xdx16eex/4(16+x)2dxSubst(eex+xdx,x,x4)=3x+x2+4e14(4ex/4+x)16+xdx16eex/4(16+x)2dxSubst(exdx,x,ex/4)=eex/4+3x+x2+4e14(4ex/4+x)16+xdx16eex/4(16+x)2dx

________________________________________________________________________________________

Mathematica [A]  time = 0.25, size = 26, normalized size = 0.90 x(48eex/4+19x+x2)16+x

Antiderivative was successfully verified.

[In]

Integrate[(3072 + 2432*x + 268*x^2 + 8*x^3 + E^E^(x/4)*(-64 + E^(x/4)*(-16*x - x^2)))/(1024 + 128*x + 4*x^2),x
]

[Out]

(x*(48 - E^E^(x/4) + 19*x + x^2))/(16 + x)

________________________________________________________________________________________

fricas [A]  time = 0.65, size = 26, normalized size = 0.90 x3+19x2xe(e(14x))+48xx+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2-16*x)*exp(1/4*x)-64)*exp(exp(1/4*x))+8*x^3+268*x^2+2432*x+3072)/(4*x^2+128*x+1024),x, algori
thm="fricas")

[Out]

(x^3 + 19*x^2 - x*e^(e^(1/4*x)) + 48*x)/(x + 16)

________________________________________________________________________________________

giac [B]  time = 0.18, size = 53, normalized size = 1.83 x3e(14x)+19x2e(14x)+48xe(14x)xe(14x+e(14x))xe(14x)+16e(14x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2-16*x)*exp(1/4*x)-64)*exp(exp(1/4*x))+8*x^3+268*x^2+2432*x+3072)/(4*x^2+128*x+1024),x, algori
thm="giac")

[Out]

(x^3*e^(1/4*x) + 19*x^2*e^(1/4*x) + 48*x*e^(1/4*x) - x*e^(1/4*x + e^(1/4*x)))/(x*e^(1/4*x) + 16*e^(1/4*x))

________________________________________________________________________________________

maple [A]  time = 0.41, size = 21, normalized size = 0.72




method result size



risch x2+3xeex4xx+16 21
norman x3+19x2xeex4768x+16 25



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-x^2-16*x)*exp(1/4*x)-64)*exp(exp(1/4*x))+8*x^3+268*x^2+2432*x+3072)/(4*x^2+128*x+1024),x,method=_RETUR
NVERBOSE)

[Out]

x^2+3*x-exp(exp(1/4*x))*x/(x+16)

________________________________________________________________________________________

maxima [A]  time = 0.41, size = 20, normalized size = 0.69 x2+3xxe(e(14x))x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x^2-16*x)*exp(1/4*x)-64)*exp(exp(1/4*x))+8*x^3+268*x^2+2432*x+3072)/(4*x^2+128*x+1024),x, algori
thm="maxima")

[Out]

x^2 + 3*x - x*e^(e^(1/4*x))/(x + 16)

________________________________________________________________________________________

mupad [B]  time = 5.22, size = 22, normalized size = 0.76 x(19xeex/4+x2+48)x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((2432*x - exp(exp(x/4))*(exp(x/4)*(16*x + x^2) + 64) + 268*x^2 + 8*x^3 + 3072)/(128*x + 4*x^2 + 1024),x)

[Out]

(x*(19*x - exp(exp(x/4)) + x^2 + 48))/(x + 16)

________________________________________________________________________________________

sympy [A]  time = 0.16, size = 17, normalized size = 0.59 x2+3xxeex4x+16

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-x**2-16*x)*exp(1/4*x)-64)*exp(exp(1/4*x))+8*x**3+268*x**2+2432*x+3072)/(4*x**2+128*x+1024),x)

[Out]

x**2 + 3*x - x*exp(exp(x/4))/(x + 16)

________________________________________________________________________________________