Optimal. Leaf size=25 \[ 2 \left (e^x \log \left (\log \left (e^x \left (e^{x^2}-x\right )\right )\right )\right )^{2/9} \]
________________________________________________________________________________________
Rubi [A] time = 2.72, antiderivative size = 26, normalized size of antiderivative = 1.04, number of steps used = 3, number of rules used = 3, integrand size = 132, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {6719, 2281, 2288} \begin {gather*} 2 \left (e^x \log \left (\log \left (e^{x^2+x}-e^x x\right )\right )\right )^{2/9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2281
Rule 2288
Rule 6719
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {\left (e^x \log \left (\log \left (e^{x+x^2}-e^x x\right )\right )\right )^{2/9} \int \frac {\left (e^x\right )^{2/9} \left (-4-4 x+e^{x^2} (4+8 x)+\left (4 e^{x^2}-4 x\right ) \log \left (e^{x+x^2}-e^x x\right ) \log \left (\log \left (e^{x+x^2}-e^x x\right )\right )\right )}{\left (9 e^{x^2}-9 x\right ) \log \left (e^{x+x^2}-e^x x\right ) \log ^{\frac {7}{9}}\left (\log \left (e^{x+x^2}-e^x x\right )\right )} \, dx}{\left (e^x\right )^{2/9} \log ^{\frac {2}{9}}\left (\log \left (e^{x+x^2}-e^x x\right )\right )}\\ &=\frac {\left (e^{-2 x/9} \left (e^x \log \left (\log \left (e^{x+x^2}-e^x x\right )\right )\right )^{2/9}\right ) \int \frac {e^{2 x/9} \left (-4-4 x+e^{x^2} (4+8 x)+\left (4 e^{x^2}-4 x\right ) \log \left (e^{x+x^2}-e^x x\right ) \log \left (\log \left (e^{x+x^2}-e^x x\right )\right )\right )}{\left (9 e^{x^2}-9 x\right ) \log \left (e^{x+x^2}-e^x x\right ) \log ^{\frac {7}{9}}\left (\log \left (e^{x+x^2}-e^x x\right )\right )} \, dx}{\log ^{\frac {2}{9}}\left (\log \left (e^{x+x^2}-e^x x\right )\right )}\\ &=2 \left (e^x \log \left (\log \left (e^{x+x^2}-e^x x\right )\right )\right )^{2/9}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 25, normalized size = 1.00 \begin {gather*} 2 \left (e^x \log \left (\log \left (e^x \left (e^{x^2}-x\right )\right )\right )\right )^{2/9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4 \, {\left ({\left (x - e^{\left (x^{2}\right )}\right )} \log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right ) \log \left (\log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right )\right ) - {\left (2 \, x + 1\right )} e^{\left (x^{2}\right )} + x + 1\right )} e^{\left (\frac {2}{9} \, x\right )}}{9 \, {\left (x - e^{\left (x^{2}\right )}\right )} \log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right ) \log \left (\log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right )\right )^{\frac {7}{9}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.05, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 \,{\mathrm e}^{x^{2}}-4 x \right ) \ln \left ({\mathrm e}^{x} {\mathrm e}^{x^{2}}-{\mathrm e}^{x} x \right ) \ln \left (\ln \left ({\mathrm e}^{x} {\mathrm e}^{x^{2}}-{\mathrm e}^{x} x \right )\right )+\left (8 x +4\right ) {\mathrm e}^{x^{2}}-4 x -4\right ) \left ({\mathrm e}^{x} \ln \left (\ln \left ({\mathrm e}^{x} {\mathrm e}^{x^{2}}-{\mathrm e}^{x} x \right )\right )\right )^{\frac {2}{9}}}{\left (9 \,{\mathrm e}^{x^{2}}-9 x \right ) \ln \left ({\mathrm e}^{x} {\mathrm e}^{x^{2}}-{\mathrm e}^{x} x \right ) \ln \left (\ln \left ({\mathrm e}^{x} {\mathrm e}^{x^{2}}-{\mathrm e}^{x} x \right )\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \frac {4}{9} \, \int \frac {{\left ({\left (x - e^{\left (x^{2}\right )}\right )} \log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right ) \log \left (\log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right )\right ) - {\left (2 \, x + 1\right )} e^{\left (x^{2}\right )} + x + 1\right )} e^{\left (\frac {2}{9} \, x\right )}}{{\left (x - e^{\left (x^{2}\right )}\right )} \log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right ) \log \left (\log \left (-x e^{x} + e^{\left (x^{2} + x\right )}\right )\right )^{\frac {7}{9}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.09, size = 23, normalized size = 0.92 \begin {gather*} 2\,{\mathrm {e}}^{\frac {2\,x}{9}}\,{\ln \left (\ln \left ({\mathrm {e}}^{x^2}\,{\mathrm {e}}^x-x\,{\mathrm {e}}^x\right )\right )}^{2/9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________