3.85.55 1x+(x2+x3)log(4)+e1+x(2+2x+(2x2+2x3)log(4))+e2+2x(1+2x+(x2+2x3)log(4))x2+x4log(4)dx

Optimal. Leaf size=23 (1+e1+x)2x+log(1x+xlog(4))

________________________________________________________________________________________

Rubi [B]  time = 0.92, antiderivative size = 48, normalized size of antiderivative = 2.09, number of steps used = 8, number of rules used = 5, integrand size = 82, number of rulesintegrand size = 0.061, Rules used = {1593, 6725, 2197, 1802, 260} log(16)log(x2log(4)+1)2log(4)+2ex+1x+e2x+2x+1xlog(x)

Antiderivative was successfully verified.

[In]

Int[(-1 - x + (-x^2 + x^3)*Log[4] + E^(1 + x)*(-2 + 2*x + (-2*x^2 + 2*x^3)*Log[4]) + E^(2 + 2*x)*(-1 + 2*x + (
-x^2 + 2*x^3)*Log[4]))/(x^2 + x^4*Log[4]),x]

[Out]

x^(-1) + (2*E^(1 + x))/x + E^(2 + 2*x)/x - Log[x] + (Log[16]*Log[1 + x^2*Log[4]])/(2*Log[4])

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rule 1802

Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]

Rule 2197

Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]

Rule 6725

Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
 /; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]

Rubi steps

integral=1x+(x2+x3)log(4)+e1+x(2+2x+(2x2+2x3)log(4))+e2+2x(1+2x+(x2+2x3)log(4))x2(1+x2log(4))dx=(2e1+x(1+x)x2+e2+2x(1+2x)x2+1xx2log(4)+x3log(4)x2(1+x2log(4)))dx=2e1+x(1+x)x2dx+e2+2x(1+2x)x2dx+1xx2log(4)+x3log(4)x2(1+x2log(4))dx=2e1+xx+e2+2xx+(1x21x+xlog(16)1+x2log(4))dx=1x+2e1+xx+e2+2xxlog(x)+log(16)x1+x2log(4)dx=1x+2e1+xx+e2+2xxlog(x)+log(16)log(1+x2log(4))2log(4)

________________________________________________________________________________________

Mathematica [B]  time = 0.18, size = 50, normalized size = 2.17 4e1+xlog(4)+log(16)+e2+2xlog(16)2xlog(4)log(x)+xlog(16)log(1+x2log(4))xlog(16)

Antiderivative was successfully verified.

[In]

Integrate[(-1 - x + (-x^2 + x^3)*Log[4] + E^(1 + x)*(-2 + 2*x + (-2*x^2 + 2*x^3)*Log[4]) + E^(2 + 2*x)*(-1 + 2
*x + (-x^2 + 2*x^3)*Log[4]))/(x^2 + x^4*Log[4]),x]

[Out]

(4*E^(1 + x)*Log[4] + Log[16] + E^(2 + 2*x)*Log[16] - 2*x*Log[4]*Log[x] + x*Log[16]*Log[1 + x^2*Log[4]])/(x*Lo
g[16])

________________________________________________________________________________________

fricas [A]  time = 0.81, size = 35, normalized size = 1.52 xlog(2x2log(2)+1)xlog(x)+e(2x+2)+2e(x+1)+1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="fricas")

[Out]

(x*log(2*x^2*log(2) + 1) - x*log(x) + e^(2*x + 2) + 2*e^(x + 1) + 1)/x

________________________________________________________________________________________

giac [A]  time = 0.12, size = 35, normalized size = 1.52 xlog(2x2log(2)+1)xlog(x)+e(2x+2)+2e(x+1)+1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="giac")

[Out]

(x*log(2*x^2*log(2) + 1) - x*log(x) + e^(2*x + 2) + 2*e^(x + 1) + 1)/x

________________________________________________________________________________________

maple [A]  time = 0.38, size = 34, normalized size = 1.48




method result size



norman 1+e2x+2+2ex+1xln(x)+ln(2x2ln(2)+1) 34
risch 1xln(x)+ln(2x2ln(2)1)+e2x+2x+2ex+1x 38
derivativedivides e2x+2xln(x)+2ex+1x+1x+ln(2ln(2)(x+1)24ln(2)(x+1)+2ln(2)+1) 51
default e2x+2xln(x)+2ex+1x+1x+ln(2ln(2)(x+1)24ln(2)(x+1)+2ln(2)+1) 51



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*(2*x^3-x^2)*ln(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*ln(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*ln(2)-x-1)/(2*x
^4*ln(2)+x^2),x,method=_RETURNVERBOSE)

[Out]

(1+exp(x+1)^2+2*exp(x+1))/x-ln(x)+ln(2*x^2*ln(2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.50, size = 37, normalized size = 1.61 e(2x+2)+2e(x+1)x+1x+log(2x2log(2)+1)12log(x2)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="maxima")

[Out]

(e^(2*x + 2) + 2*e^(x + 1))/x + 1/x + log(2*x^2*log(2) + 1) - 1/2*log(x^2)

________________________________________________________________________________________

mupad [B]  time = 5.25, size = 33, normalized size = 1.43 ln(2ln(2)x2+1)ln(x)+2ex+1+e2x+2+1x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(x + 2*log(2)*(x^2 - x^3) + exp(x + 1)*(2*log(2)*(2*x^2 - 2*x^3) - 2*x + 2) + exp(2*x + 2)*(2*log(2)*(x^2
 - 2*x^3) - 2*x + 1) + 1)/(2*x^4*log(2) + x^2),x)

[Out]

log(2*x^2*log(2) + 1) - log(x) + (2*exp(x + 1) + exp(2*x + 2) + 1)/x

________________________________________________________________________________________

sympy [A]  time = 0.36, size = 37, normalized size = 1.61 log(x)+log(x2+12log(2))+1x+2xex+1+xe2x+2x2

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*(2*x**3-x**2)*ln(2)+2*x-1)*exp(x+1)**2+(2*(2*x**3-2*x**2)*ln(2)+2*x-2)*exp(x+1)+2*(x**3-x**2)*ln
(2)-x-1)/(2*x**4*ln(2)+x**2),x)

[Out]

-log(x) + log(x**2 + 1/(2*log(2))) + 1/x + (2*x*exp(x + 1) + x*exp(2*x + 2))/x**2

________________________________________________________________________________________