3.85.55
Optimal. Leaf size=23
________________________________________________________________________________________
Rubi [B] time = 0.92, antiderivative size = 48, normalized size of antiderivative = 2.09,
number of steps used = 8, number of rules used = 5, integrand size = 82, = 0.061, Rules used =
{1593, 6725, 2197, 1802, 260}
Antiderivative was successfully verified.
[In]
Int[(-1 - x + (-x^2 + x^3)*Log[4] + E^(1 + x)*(-2 + 2*x + (-2*x^2 + 2*x^3)*Log[4]) + E^(2 + 2*x)*(-1 + 2*x + (
-x^2 + 2*x^3)*Log[4]))/(x^2 + x^4*Log[4]),x]
[Out]
x^(-1) + (2*E^(1 + x))/x + E^(2 + 2*x)/x - Log[x] + (Log[16]*Log[1 + x^2*Log[4]])/(2*Log[4])
Rule 260
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]
Rule 1593
Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]
Rule 1802
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(c*x)^m*Pq*(a + b*x
^2)^p, x], x] /; FreeQ[{a, b, c, m}, x] && PolyQ[Pq, x] && IGtQ[p, -2]
Rule 2197
Int[(F_)^((c_.)*(v_))*(u_)^(m_.)*(w_), x_Symbol] :> With[{b = Coefficient[v, x, 1], d = Coefficient[u, x, 0],
e = Coefficient[u, x, 1], f = Coefficient[w, x, 0], g = Coefficient[w, x, 1]}, Simp[(g*u^(m + 1)*F^(c*v))/(b*c
*e*Log[F]), x] /; EqQ[e*g*(m + 1) - b*c*(e*f - d*g)*Log[F], 0]] /; FreeQ[{F, c, m}, x] && LinearQ[{u, v, w}, x
]
Rule 6725
Int[(u_)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a + b*x^n), x]}, Int[v, x]
/; SumQ[v]] /; FreeQ[{a, b}, x] && IGtQ[n, 0]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.18, size = 50, normalized size = 2.17
Antiderivative was successfully verified.
[In]
Integrate[(-1 - x + (-x^2 + x^3)*Log[4] + E^(1 + x)*(-2 + 2*x + (-2*x^2 + 2*x^3)*Log[4]) + E^(2 + 2*x)*(-1 + 2
*x + (-x^2 + 2*x^3)*Log[4]))/(x^2 + x^4*Log[4]),x]
[Out]
(4*E^(1 + x)*Log[4] + Log[16] + E^(2 + 2*x)*Log[16] - 2*x*Log[4]*Log[x] + x*Log[16]*Log[1 + x^2*Log[4]])/(x*Lo
g[16])
________________________________________________________________________________________
fricas [A] time = 0.81, size = 35, normalized size = 1.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="fricas")
[Out]
(x*log(2*x^2*log(2) + 1) - x*log(x) + e^(2*x + 2) + 2*e^(x + 1) + 1)/x
________________________________________________________________________________________
giac [A] time = 0.12, size = 35, normalized size = 1.52
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="giac")
[Out]
(x*log(2*x^2*log(2) + 1) - x*log(x) + e^(2*x + 2) + 2*e^(x + 1) + 1)/x
________________________________________________________________________________________
maple [A] time = 0.38, size = 34, normalized size = 1.48
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*(2*x^3-x^2)*ln(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*ln(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*ln(2)-x-1)/(2*x
^4*ln(2)+x^2),x,method=_RETURNVERBOSE)
[Out]
(1+exp(x+1)^2+2*exp(x+1))/x-ln(x)+ln(2*x^2*ln(2)+1)
________________________________________________________________________________________
maxima [A] time = 0.50, size = 37, normalized size = 1.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x^3-x^2)*log(2)+2*x-1)*exp(x+1)^2+(2*(2*x^3-2*x^2)*log(2)+2*x-2)*exp(x+1)+2*(x^3-x^2)*log(2)-
x-1)/(2*x^4*log(2)+x^2),x, algorithm="maxima")
[Out]
(e^(2*x + 2) + 2*e^(x + 1))/x + 1/x + log(2*x^2*log(2) + 1) - 1/2*log(x^2)
________________________________________________________________________________________
mupad [B] time = 5.25, size = 33, normalized size = 1.43
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(x + 2*log(2)*(x^2 - x^3) + exp(x + 1)*(2*log(2)*(2*x^2 - 2*x^3) - 2*x + 2) + exp(2*x + 2)*(2*log(2)*(x^2
- 2*x^3) - 2*x + 1) + 1)/(2*x^4*log(2) + x^2),x)
[Out]
log(2*x^2*log(2) + 1) - log(x) + (2*exp(x + 1) + exp(2*x + 2) + 1)/x
________________________________________________________________________________________
sympy [A] time = 0.36, size = 37, normalized size = 1.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*(2*x**3-x**2)*ln(2)+2*x-1)*exp(x+1)**2+(2*(2*x**3-2*x**2)*ln(2)+2*x-2)*exp(x+1)+2*(x**3-x**2)*ln
(2)-x-1)/(2*x**4*ln(2)+x**2),x)
[Out]
-log(x) + log(x**2 + 1/(2*log(2))) + 1/x + (2*x*exp(x + 1) + x*exp(2*x + 2))/x**2
________________________________________________________________________________________