3.85.62
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [B] time = 0.69, antiderivative size = 37, normalized size of antiderivative = 2.06,
number of steps used = 9, number of rules used = 6, integrand size = 63, = 0.095, Rules used =
{6741, 6742, 1587, 260, 2302, 29}
Antiderivative was successfully verified.
[In]
Int[(256 + 16*x^4 + 32*x^5 + x^9 + x^10 + (256 + 80*x^4 + 32*x^5 + x^10)*Log[x])/((256*x + 16*x^5 + 32*x^6 + x
^10 + x^11)*Log[x]),x]
[Out]
Log[x] + Log[2 + x] + Log[8 - 4*x + 2*x^2 - x^3 + x^4] - Log[16 + x^5] + Log[Log[x]]
Rule 29
Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]
Rule 260
Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]
Rule 1587
Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 6741
Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 23, normalized size = 1.28
Antiderivative was successfully verified.
[In]
Integrate[(256 + 16*x^4 + 32*x^5 + x^9 + x^10 + (256 + 80*x^4 + 32*x^5 + x^10)*Log[x])/((256*x + 16*x^5 + 32*x
^6 + x^10 + x^11)*Log[x]),x]
[Out]
Log[x] - Log[16 + x^5] + Log[16 + x^4 + x^5] + Log[Log[x]]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 23, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="fricas")
[Out]
log(x^6 + x^5 + 16*x) - log(x^5 + 16) + log(log(x))
________________________________________________________________________________________
giac [A] time = 0.20, size = 23, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="giac")
[Out]
log(x^5 + x^4 + 16) - log(x^5 + 16) + log(x) + log(log(x))
________________________________________________________________________________________
maple [A] time = 0.09, size = 24, normalized size = 1.33
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
default |
|
|
norman |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((x^10+32*x^5+80*x^4+256)*ln(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/ln(x),x,method
=_RETURNVERBOSE)
[Out]
-ln(x^5+16)+ln(x^6+x^5+16*x)+ln(ln(x))
________________________________________________________________________________________
maxima [B] time = 0.39, size = 37, normalized size = 2.06
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="maxima")
[Out]
-log(x^5 + 16) + log(x^4 - x^3 + 2*x^2 - 4*x + 8) + log(x + 2) + log(x) + log(log(x))
________________________________________________________________________________________
mupad [B] time = 5.47, size = 23, normalized size = 1.28
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((16*x^4 + 32*x^5 + x^9 + x^10 + log(x)*(80*x^4 + 32*x^5 + x^10 + 256) + 256)/(log(x)*(256*x + 16*x^5 + 32*
x^6 + x^10 + x^11)),x)
[Out]
log(log(x)) + log(x*(x^4 + x^5 + 16)) - log(x^5 + 16)
________________________________________________________________________________________
sympy [A] time = 0.21, size = 22, normalized size = 1.22
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((x**10+32*x**5+80*x**4+256)*ln(x)+x**10+x**9+32*x**5+16*x**4+256)/(x**11+x**10+32*x**6+16*x**5+256*
x)/ln(x),x)
[Out]
-log(x**5 + 16) + log(x**6 + x**5 + 16*x) + log(log(x))
________________________________________________________________________________________