3.85.62 256+16x4+32x5+x9+x10+(256+80x4+32x5+x10)log(x)(256x+16x5+32x6+x10+x11)log(x)dx

Optimal. Leaf size=18 log(x+x16x4+x)+log(log(x))

________________________________________________________________________________________

Rubi [B]  time = 0.69, antiderivative size = 37, normalized size of antiderivative = 2.06, number of steps used = 9, number of rules used = 6, integrand size = 63, number of rulesintegrand size = 0.095, Rules used = {6741, 6742, 1587, 260, 2302, 29} log(x5+16)+log(x4x3+2x24x+8)+log(x)+log(x+2)+log(log(x))

Antiderivative was successfully verified.

[In]

Int[(256 + 16*x^4 + 32*x^5 + x^9 + x^10 + (256 + 80*x^4 + 32*x^5 + x^10)*Log[x])/((256*x + 16*x^5 + 32*x^6 + x
^10 + x^11)*Log[x]),x]

[Out]

Log[x] + Log[2 + x] + Log[8 - 4*x + 2*x^2 - x^3 + x^4] - Log[16 + x^5] + Log[Log[x]]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 1587

Int[(Pp_)/(Qq_), x_Symbol] :> With[{p = Expon[Pp, x], q = Expon[Qq, x]}, Simp[(Coeff[Pp, x, p]*Log[RemoveConte
nt[Qq, x]])/(q*Coeff[Qq, x, q]), x] /; EqQ[p, q - 1] && EqQ[Pp, Simplify[(Coeff[Pp, x, p]*D[Qq, x])/(q*Coeff[Q
q, x, q])]]] /; PolyQ[Pp, x] && PolyQ[Qq, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 6741

Int[u_, x_Symbol] :> With[{v = NormalizeIntegrand[u, x]}, Int[v, x] /; v =!= u]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=256+16x4+32x5+x9+x10+(256+80x4+32x5+x10)log(x)x(256+16x4+32x5+x9+x10)log(x)dx=(256+80x4+32x5+x10x(256+16x4+32x5+x9+x10)+1xlog(x))dx=256+80x4+32x5+x10x(256+16x4+32x5+x9+x10)dx+1xlog(x)dx=(1x+12+x+4+4x3x2+4x384x+2x2x3+x45x416+x5)dx+Subst(1xdx,x,log(x))=log(x)+log(2+x)+log(log(x))5x416+x5dx+4+4x3x2+4x384x+2x2x3+x4dx=log(x)+log(2+x)+log(84x+2x2x3+x4)log(16+x5)+log(log(x))

________________________________________________________________________________________

Mathematica [A]  time = 0.16, size = 23, normalized size = 1.28 log(x)log(16+x5)+log(16+x4+x5)+log(log(x))

Antiderivative was successfully verified.

[In]

Integrate[(256 + 16*x^4 + 32*x^5 + x^9 + x^10 + (256 + 80*x^4 + 32*x^5 + x^10)*Log[x])/((256*x + 16*x^5 + 32*x
^6 + x^10 + x^11)*Log[x]),x]

[Out]

Log[x] - Log[16 + x^5] + Log[16 + x^4 + x^5] + Log[Log[x]]

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 23, normalized size = 1.28 log(x6+x5+16x)log(x5+16)+log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="fricas")

[Out]

log(x^6 + x^5 + 16*x) - log(x^5 + 16) + log(log(x))

________________________________________________________________________________________

giac [A]  time = 0.20, size = 23, normalized size = 1.28 log(x5+x4+16)log(x5+16)+log(x)+log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="giac")

[Out]

log(x^5 + x^4 + 16) - log(x^5 + 16) + log(x) + log(log(x))

________________________________________________________________________________________

maple [A]  time = 0.09, size = 24, normalized size = 1.33




method result size



risch ln(x5+16)+ln(x6+x5+16x)+ln(ln(x)) 24
default ln(ln(x))+ln(x)+ln(x4x3+2x24x+8)ln(x5+16)+ln(2+x) 38
norman ln(ln(x))+ln(x)+ln(x4x3+2x24x+8)ln(x5+16)+ln(2+x) 38



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((x^10+32*x^5+80*x^4+256)*ln(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/ln(x),x,method
=_RETURNVERBOSE)

[Out]

-ln(x^5+16)+ln(x^6+x^5+16*x)+ln(ln(x))

________________________________________________________________________________________

maxima [B]  time = 0.39, size = 37, normalized size = 2.06 log(x5+16)+log(x4x3+2x24x+8)+log(x+2)+log(x)+log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x^10+32*x^5+80*x^4+256)*log(x)+x^10+x^9+32*x^5+16*x^4+256)/(x^11+x^10+32*x^6+16*x^5+256*x)/log(x),
x, algorithm="maxima")

[Out]

-log(x^5 + 16) + log(x^4 - x^3 + 2*x^2 - 4*x + 8) + log(x + 2) + log(x) + log(log(x))

________________________________________________________________________________________

mupad [B]  time = 5.47, size = 23, normalized size = 1.28 ln(ln(x))+ln(x(x5+x4+16))ln(x5+16)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((16*x^4 + 32*x^5 + x^9 + x^10 + log(x)*(80*x^4 + 32*x^5 + x^10 + 256) + 256)/(log(x)*(256*x + 16*x^5 + 32*
x^6 + x^10 + x^11)),x)

[Out]

log(log(x)) + log(x*(x^4 + x^5 + 16)) - log(x^5 + 16)

________________________________________________________________________________________

sympy [A]  time = 0.21, size = 22, normalized size = 1.22 log(x5+16)+log(x6+x5+16x)+log(log(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((x**10+32*x**5+80*x**4+256)*ln(x)+x**10+x**9+32*x**5+16*x**4+256)/(x**11+x**10+32*x**6+16*x**5+256*
x)/ln(x),x)

[Out]

-log(x**5 + 16) + log(x**6 + x**5 + 16*x) + log(log(x))

________________________________________________________________________________________