3.85.65
Optimal. Leaf size=21
________________________________________________________________________________________
Rubi [B] time = 0.81, antiderivative size = 51, normalized size of antiderivative = 2.43,
number of steps used = 14, number of rules used = 8, integrand size = 45, = 0.178, Rules used
= {6742, 2353, 2306, 2309, 2178, 2302, 30, 2288}
Antiderivative was successfully verified.
[In]
Int[(100 - 20*x + E^x*(-10 + 2*x) + (100 + E^x*(-10 + 10*x - 2*x^2))*Log[25*x])/(x^2*Log[25*x]^2),x]
[Out]
20/Log[25*x] - 100/(x*Log[25*x]) + (2*E^x*(5*x*Log[25*x] - x^2*Log[25*x]))/(x^2*Log[25*x]^2)
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 2178
Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] && !$UseGamma === True
Rule 2288
Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2306
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]
Rule 2309
Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
+ b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]
Rule 2353
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.28, size = 19, normalized size = 0.90
Antiderivative was successfully verified.
[In]
Integrate[(100 - 20*x + E^x*(-10 + 2*x) + (100 + E^x*(-10 + 10*x - 2*x^2))*Log[25*x])/(x^2*Log[25*x]^2),x]
[Out]
(-2*(-10 + E^x)*(-5 + x))/(x*Log[25*x])
________________________________________________________________________________________
fricas [A] time = 0.83, size = 22, normalized size = 1.05
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="fri
cas")
[Out]
-2*((x - 5)*e^x - 10*x + 50)/(x*log(25*x))
________________________________________________________________________________________
giac [A] time = 0.24, size = 24, normalized size = 1.14
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="gia
c")
[Out]
-2*(x*e^x - 10*x - 5*e^x + 50)/(x*log(25*x))
________________________________________________________________________________________
maple [A] time = 0.06, size = 25, normalized size = 1.19
|
|
|
method |
result |
size |
|
|
|
norman |
|
|
risch |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((((-2*x^2+10*x-10)*exp(x)+100)*ln(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/ln(25*x)^2,x,method=_RETURNVERBOSE)
[Out]
(-100+20*x-2*exp(x)*x+10*exp(x))/x/ln(25*x)
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="max
ima")
[Out]
-2*(x - 5)*e^x/(2*x*log(5) + x*log(x)) + 20/log(25*x) - 2500*gamma(-1, log(25*x)) + 100*integrate(1/(2*x^2*log
(5) + x^2*log(x)), x)
________________________________________________________________________________________
mupad [B] time = 5.26, size = 18, normalized size = 0.86
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(20*x - exp(x)*(2*x - 10) + log(25*x)*(exp(x)*(2*x^2 - 10*x + 10) - 100) - 100)/(x^2*log(25*x)^2),x)
[Out]
-(2*(exp(x) - 10)*(x - 5))/(x*log(25*x))
________________________________________________________________________________________
sympy [A] time = 0.31, size = 26, normalized size = 1.24
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((((-2*x**2+10*x-10)*exp(x)+100)*ln(25*x)+(2*x-10)*exp(x)-20*x+100)/x**2/ln(25*x)**2,x)
[Out]
(10 - 2*x)*exp(x)/(x*log(25*x)) + (20*x - 100)/(x*log(25*x))
________________________________________________________________________________________