3.85.65 10020x+ex(10+2x)+(100+ex(10+10x2x2))log(25x)x2log2(25x)dx

Optimal. Leaf size=21 2(10+ex)(5x)xlog(25x)

________________________________________________________________________________________

Rubi [B]  time = 0.81, antiderivative size = 51, normalized size of antiderivative = 2.43, number of steps used = 14, number of rules used = 8, integrand size = 45, number of rulesintegrand size = 0.178, Rules used = {6742, 2353, 2306, 2309, 2178, 2302, 30, 2288} 2ex(5xlog(25x)x2log(25x))x2log2(25x)100xlog(25x)+20log(25x)

Antiderivative was successfully verified.

[In]

Int[(100 - 20*x + E^x*(-10 + 2*x) + (100 + E^x*(-10 + 10*x - 2*x^2))*Log[25*x])/(x^2*Log[25*x]^2),x]

[Out]

20/Log[25*x] - 100/(x*Log[25*x]) + (2*E^x*(5*x*Log[25*x] - x^2*Log[25*x]))/(x^2*Log[25*x]^2)

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 2178

Int[(F_)^((g_.)*((e_.) + (f_.)*(x_)))/((c_.) + (d_.)*(x_)), x_Symbol] :> Simp[(F^(g*(e - (c*f)/d))*ExpIntegral
Ei[(f*g*(c + d*x)*Log[F])/d])/d, x] /; FreeQ[{F, c, d, e, f, g}, x] &&  !$UseGamma === True

Rule 2288

Int[(y_.)*(F_)^(u_)*((v_) + (w_)), x_Symbol] :> With[{z = (v*y)/(Log[F]*D[u, x])}, Simp[F^u*z, x] /; EqQ[D[z,
x], w*y]] /; FreeQ[F, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2306

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log
[c*x^n])^(p + 1))/(b*d*n*(p + 1)), x] - Dist[(m + 1)/(b*n*(p + 1)), Int[(d*x)^m*(a + b*Log[c*x^n])^(p + 1), x]
, x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && LtQ[p, -1]

Rule 2309

Int[((a_.) + Log[(c_.)*(x_)]*(b_.))^(p_)*(x_)^(m_.), x_Symbol] :> Dist[1/c^(m + 1), Subst[Int[E^((m + 1)*x)*(a
 + b*x)^p, x], x, Log[c*x]], x] /; FreeQ[{a, b, c, p}, x] && IntegerQ[m]

Rule 2353

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol]
:> With[{u = ExpandIntegrand[(a + b*Log[c*x^n])^p, (f*x)^m*(d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[
{a, b, c, d, e, f, m, n, p, q, r}, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[m] && IntegerQ[r
]))

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(20(5+x5log(25x))x2log2(25x)2ex(5x+5log(25x)5xlog(25x)+x2log(25x))x2log2(25x))dx=(2ex(5x+5log(25x)5xlog(25x)+x2log(25x))x2log2(25x)dx)205+x5log(25x)x2log2(25x)dx=2ex(5xlog(25x)x2log(25x))x2log2(25x)20(5+xx2log2(25x)5x2log(25x))dx=2ex(5xlog(25x)x2log(25x))x2log2(25x)205+xx2log2(25x)dx+1001x2log(25x)dx=2ex(5xlog(25x)x2log(25x))x2log2(25x)20(5x2log2(25x)+1xlog2(25x))dx+2500Subst(exxdx,x,log(25x))=2500Ei(log(25x))+2ex(5xlog(25x)x2log(25x))x2log2(25x)201xlog2(25x)dx+1001x2log2(25x)dx=2500Ei(log(25x))100xlog(25x)+2ex(5xlog(25x)x2log(25x))x2log2(25x)20Subst(1x2dx,x,log(25x))1001x2log(25x)dx=2500Ei(log(25x))+20log(25x)100xlog(25x)+2ex(5xlog(25x)x2log(25x))x2log2(25x)2500Subst(exxdx,x,log(25x))=20log(25x)100xlog(25x)+2ex(5xlog(25x)x2log(25x))x2log2(25x)

________________________________________________________________________________________

Mathematica [A]  time = 0.28, size = 19, normalized size = 0.90 2(10+ex)(5+x)xlog(25x)

Antiderivative was successfully verified.

[In]

Integrate[(100 - 20*x + E^x*(-10 + 2*x) + (100 + E^x*(-10 + 10*x - 2*x^2))*Log[25*x])/(x^2*Log[25*x]^2),x]

[Out]

(-2*(-10 + E^x)*(-5 + x))/(x*Log[25*x])

________________________________________________________________________________________

fricas [A]  time = 0.83, size = 22, normalized size = 1.05 2((x5)ex10x+50)xlog(25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="fri
cas")

[Out]

-2*((x - 5)*e^x - 10*x + 50)/(x*log(25*x))

________________________________________________________________________________________

giac [A]  time = 0.24, size = 24, normalized size = 1.14 2(xex10x5ex+50)xlog(25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="gia
c")

[Out]

-2*(x*e^x - 10*x - 5*e^x + 50)/(x*log(25*x))

________________________________________________________________________________________

maple [A]  time = 0.06, size = 25, normalized size = 1.19




method result size



norman 100+20x2exx+10exxln(25x) 25
risch 2(exx10x5ex+50)xln(25x) 25
default 2exx+10exln(25x)x+20ln(25x)100xln(25x) 41



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((-2*x^2+10*x-10)*exp(x)+100)*ln(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/ln(25*x)^2,x,method=_RETURNVERBOSE)

[Out]

(-100+20*x-2*exp(x)*x+10*exp(x))/x/ln(25*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 2(x5)ex2xlog(5)+xlog(x)+20log(25x)2500Γ(1,log(25x))+10012x2log(5)+x2log(x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x^2+10*x-10)*exp(x)+100)*log(25*x)+(2*x-10)*exp(x)-20*x+100)/x^2/log(25*x)^2,x, algorithm="max
ima")

[Out]

-2*(x - 5)*e^x/(2*x*log(5) + x*log(x)) + 20/log(25*x) - 2500*gamma(-1, log(25*x)) + 100*integrate(1/(2*x^2*log
(5) + x^2*log(x)), x)

________________________________________________________________________________________

mupad [B]  time = 5.26, size = 18, normalized size = 0.86 2(ex10)(x5)xln(25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(20*x - exp(x)*(2*x - 10) + log(25*x)*(exp(x)*(2*x^2 - 10*x + 10) - 100) - 100)/(x^2*log(25*x)^2),x)

[Out]

-(2*(exp(x) - 10)*(x - 5))/(x*log(25*x))

________________________________________________________________________________________

sympy [A]  time = 0.31, size = 26, normalized size = 1.24 (102x)exxlog(25x)+20x100xlog(25x)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((-2*x**2+10*x-10)*exp(x)+100)*ln(25*x)+(2*x-10)*exp(x)-20*x+100)/x**2/ln(25*x)**2,x)

[Out]

(10 - 2*x)*exp(x)/(x*log(25*x)) + (20*x - 100)/(x*log(25*x))

________________________________________________________________________________________