Optimal. Leaf size=26 \[ 2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} \left (x+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 21.49, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4^{\frac {-16-8 x-x^2}{-2-2 x+2 \log \left (\log \left (x^2\right )\right )}} \left (\left (32+48 x+18 x^2+2 x^3\right ) \log (4)+\left (2+8 x+10 x^2+4 x^3+\left (-8 x-6 x^2+3 x^3+x^4\right ) \log (4)\right ) \log \left (x^2\right )+\left (-4-12 x-8 x^2+\left (-8 x-10 x^2-2 x^3\right ) \log (4)\right ) \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+(2+4 x) \log \left (x^2\right ) \log ^2\left (\log \left (x^2\right )\right )\right )}{\left (2+4 x+2 x^2\right ) \log \left (x^2\right )+(-4-4 x) \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+2 \log \left (x^2\right ) \log ^2\left (\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} \left (2 (1+x) (4+x)^2 \log (4)+\log \left (x^2\right ) \left ((1+x) \left (2+x (6-8 \log (4))+x^3 \log (4)+x^2 (4+\log (16))\right )-2 (1+x) \left (2+x^2 \log (4)+4 x (1+\log (4))\right ) \log \left (\log \left (x^2\right )\right )+(2+4 x) \log ^2\left (\log \left (x^2\right )\right )\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx\\ &=\int \left (2^{1+\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+2 x)-\frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+x) \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2}+\frac {2^{1+\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (4+5 x+x^2\right ) \log (4)}{1+x-\log \left (\log \left (x^2\right )\right )}\right ) \, dx\\ &=\log (4) \int \frac {2^{1+\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (4+5 x+x^2\right )}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\int 2^{1+\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+2 x) \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+x) \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (4) \int \frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (4+5 x+x^2\right )}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\int 2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+2 x) \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} (1+x) \left (-2 (4+x)^2 \log (4)+x \left (16 \log (4)+x^2 \log (4)+x \log (65536)\right ) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (4) \int \left (\frac {2^{2+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x}{1+x-\log \left (\log \left (x^2\right )\right )}+\frac {5\ 2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^2}{1+x-\log \left (\log \left (x^2\right )\right )}+\frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^3}{1+x-\log \left (\log \left (x^2\right )\right )}\right ) \, dx+\int \left (2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}}+2^{1+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x\right ) \, dx-\int \left (\frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2}+\frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2}\right ) \, dx\\ &=\log (4) \int \frac {2^{2+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\log (4) \int \frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^3}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+(5 \log (4)) \int \frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^2}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\int 2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} \, dx+\int 2^{1+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (-32 \log (4)-16 x \log (4)-2 x^2 \log (4)+16 x \log (4) \log \left (x^2\right )+x^3 \log (4) \log \left (x^2\right )+x^2 \log (65536) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx\\ &=\log (4) \int \frac {2^{2+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\log (4) \int \frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^3}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+(5 \log (4)) \int \frac {2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x^2}{1+x-\log \left (\log \left (x^2\right )\right )} \, dx+\int 2^{\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} \, dx+\int 2^{1+\frac {(4+x)^2}{1+x-\log \left (\log \left (x^2\right )\right )}} x \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} \left (-2 (4+x)^2 \log (4)+x \left (16 \log (4)+x^2 \log (4)+x \log (65536)\right ) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx-\int \frac {2^{\frac {15+7 x+x^2+\log \left (\log \left (x^2\right )\right )}{1+x-\log \left (\log \left (x^2\right )\right )}} x \left (-2 (4+x)^2 \log (4)+x \left (16 \log (4)+x^2 \log (4)+x \log (65536)\right ) \log \left (x^2\right )\right )}{\log \left (x^2\right ) \left (1+x-\log \left (\log \left (x^2\right )\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 3.62, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {4^{\frac {-16-8 x-x^2}{-2-2 x+2 \log \left (\log \left (x^2\right )\right )}} \left (\left (32+48 x+18 x^2+2 x^3\right ) \log (4)+\left (2+8 x+10 x^2+4 x^3+\left (-8 x-6 x^2+3 x^3+x^4\right ) \log (4)\right ) \log \left (x^2\right )+\left (-4-12 x-8 x^2+\left (-8 x-10 x^2-2 x^3\right ) \log (4)\right ) \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+(2+4 x) \log \left (x^2\right ) \log ^2\left (\log \left (x^2\right )\right )\right )}{\left (2+4 x+2 x^2\right ) \log \left (x^2\right )+(-4-4 x) \log \left (x^2\right ) \log \left (\log \left (x^2\right )\right )+2 \log \left (x^2\right ) \log ^2\left (\log \left (x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.04, size = 29, normalized size = 1.12 \begin {gather*} {\left (x^{2} + x\right )} 2^{\frac {x^{2} + 8 \, x + 16}{x - \log \left (\log \left (x^{2}\right )\right ) + 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -\frac {{\left ({\left (2 \, x + 1\right )} \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right )^{2} - 2 \, {\left (2 \, x^{2} + {\left (x^{3} + 5 \, x^{2} + 4 \, x\right )} \log \relax (2) + 3 \, x + 1\right )} \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right ) + 2 \, {\left (x^{3} + 9 \, x^{2} + 24 \, x + 16\right )} \log \relax (2) + {\left (2 \, x^{3} + 5 \, x^{2} + {\left (x^{4} + 3 \, x^{3} - 6 \, x^{2} - 8 \, x\right )} \log \relax (2) + 4 \, x + 1\right )} \log \left (x^{2}\right )\right )} 2^{\frac {x^{2} + 8 \, x + 16}{x - \log \left (\log \left (x^{2}\right )\right ) + 1}}}{2 \, {\left (x + 1\right )} \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right ) - \log \left (x^{2}\right ) \log \left (\log \left (x^{2}\right )\right )^{2} - {\left (x^{2} + 2 \, x + 1\right )} \log \left (x^{2}\right )}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [F] time = 0.12, size = 0, normalized size = 0.00 \[\int \frac {\left (\left (4 x +2\right ) \ln \left (x^{2}\right ) \ln \left (\ln \left (x^{2}\right )\right )^{2}+\left (2 \left (-2 x^{3}-10 x^{2}-8 x \right ) \ln \relax (2)-8 x^{2}-12 x -4\right ) \ln \left (x^{2}\right ) \ln \left (\ln \left (x^{2}\right )\right )+\left (2 \left (x^{4}+3 x^{3}-6 x^{2}-8 x \right ) \ln \relax (2)+4 x^{3}+10 x^{2}+8 x +2\right ) \ln \left (x^{2}\right )+2 \left (2 x^{3}+18 x^{2}+48 x +32\right ) \ln \relax (2)\right ) {\mathrm e}^{\frac {2 \left (-x^{2}-8 x -16\right ) \ln \relax (2)}{2 \ln \left (\ln \left (x^{2}\right )\right )-2 x -2}}}{2 \ln \left (x^{2}\right ) \ln \left (\ln \left (x^{2}\right )\right )^{2}+\left (-4 x -4\right ) \ln \left (x^{2}\right ) \ln \left (\ln \left (x^{2}\right )\right )+\left (2 x^{2}+4 x +2\right ) \ln \left (x^{2}\right )}\, dx\]
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {{\mathrm {e}}^{\frac {2\,\ln \relax (2)\,\left (x^2+8\,x+16\right )}{2\,x-2\,\ln \left (\ln \left (x^2\right )\right )+2}}\,\left (\ln \left (x^2\right )\,\left (4\,x+2\right )\,{\ln \left (\ln \left (x^2\right )\right )}^2-\ln \left (x^2\right )\,\left (12\,x+2\,\ln \relax (2)\,\left (2\,x^3+10\,x^2+8\,x\right )+8\,x^2+4\right )\,\ln \left (\ln \left (x^2\right )\right )+2\,\ln \relax (2)\,\left (2\,x^3+18\,x^2+48\,x+32\right )+\ln \left (x^2\right )\,\left (8\,x-2\,\ln \relax (2)\,\left (-x^4-3\,x^3+6\,x^2+8\,x\right )+10\,x^2+4\,x^3+2\right )\right )}{2\,\ln \left (x^2\right )\,{\ln \left (\ln \left (x^2\right )\right )}^2-\ln \left (x^2\right )\,\left (4\,x+4\right )\,\ln \left (\ln \left (x^2\right )\right )+\ln \left (x^2\right )\,\left (2\,x^2+4\,x+2\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 9.68, size = 34, normalized size = 1.31 \begin {gather*} \left (x^{2} + x\right ) e^{\frac {\left (- 2 x^{2} - 16 x - 32\right ) \log {\relax (2 )}}{- 2 x + 2 \log {\left (\log {\left (x^{2} \right )} \right )} - 2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________