Optimal. Leaf size=15 \[ e^{16 e^{-10+\frac {2 \log (x)}{x}}} \]
________________________________________________________________________________________
Rubi [F] time = 1.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right ) (32-32 \log (x))}{x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {32 \exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right ) (1-\log (x))}{x^2} \, dx\\ &=32 \int \frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right ) (1-\log (x))}{x^2} \, dx\\ &=32 \int \left (\frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right )}{x^2}-\frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right ) \log (x)}{x^2}\right ) \, dx\\ &=32 \int \frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right )}{x^2} \, dx-32 \int \frac {\exp \left (16 e^{\frac {2 (-5 x+\log (x))}{x}}+\frac {2 (-5 x+\log (x))}{x}\right ) \log (x)}{x^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 14, normalized size = 0.93 \begin {gather*} e^{\frac {16 x^{2/x}}{e^{10}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.57, size = 43, normalized size = 2.87 \begin {gather*} e^{\left (\frac {2 \, {\left (8 \, x e^{\left (-\frac {2 \, {\left (5 \, x - \log \relax (x)\right )}}{x}\right )} - 5 \, x + \log \relax (x)\right )}}{x} + \frac {2 \, {\left (5 \, x - \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 43, normalized size = 2.87 \begin {gather*} e^{\left (\frac {2 \, {\left (8 \, x e^{\left (-\frac {2 \, {\left (5 \, x - \log \relax (x)\right )}}{x}\right )} - 5 \, x + \log \relax (x)\right )}}{x} + \frac {2 \, {\left (5 \, x - \log \relax (x)\right )}}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 13, normalized size = 0.87
method | result | size |
risch | \({\mathrm e}^{16 x^{\frac {2}{x}} {\mathrm e}^{-10}}\) | \(13\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.70, size = 13, normalized size = 0.87 \begin {gather*} e^{\left (16 \, e^{\left (\frac {2 \, \log \relax (x)}{x} - 10\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.41, size = 12, normalized size = 0.80 \begin {gather*} {\mathrm {e}}^{16\,x^{2/x}\,{\mathrm {e}}^{-10}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.53, size = 14, normalized size = 0.93 \begin {gather*} e^{16 e^{\frac {2 \left (- 5 x + \log {\relax (x )}\right )}{x}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________