3.85.84 1627x2x2+(3x+x2)log(e4xx4)+(5x2x2+(4xx2)log(e4xx4)+(5+2x+(4+x)log(e4xx4))log(5+2x+(4+x)log(e4xx4)))log(xlog(5+2x+(4+x)log(e4xx4)))(5x2x2+(4xx2)log(e4xx4)+(5+2x+(4+x)log(e4xx4))log(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx

Optimal. Leaf size=31 5+xlog(xlog(5+2x+(4+x)log(e4xx4)))

________________________________________________________________________________________

Rubi [F]  time = 7.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 1627x2x2+(3x+x2)log(e4xx4)+(5x2x2+(4xx2)log(e4xx4)+(5+2x+(4+x)log(e4xx4))log(5+2x+(4+x)log(e4xx4)))log(xlog(5+2x+(4+x)log(e4xx4)))(5x2x2+(4xx2)log(e4xx4)+(5+2x+(4+x)log(e4xx4))log(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx

Verification is not applicable to the result.

[In]

Int[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E
^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]

[Out]

16*Defer[Int][1/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x -
Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 27*Defer[Int][x/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x -
 Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 2*Defer[
Int][x^2/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5
+ 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] - 3*Defer[Int][(x*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)
*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x]
 - Defer[Int][(x^2*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^
(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + Defer[Int][Log[x - Log[-5 + 2*x + (4 +
 x)*Log[E^(4*x)*x^4]]]^(-1), x]

Rubi steps

integral=1627x2x2+x(3+x)log(e4xx4)(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log(xlog(5+2x+(4+x)log(e4xx4)))(52x(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx=(16+27x+2x23xlog(e4xx4)x2log(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))+1log(xlog(5+2x+(4+x)log(e4xx4))))dx=16+27x+2x23xlog(e4xx4)x2log(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+1log(xlog(5+2x+(4+x)log(e4xx4)))dx=1627x2x2+x(3+x)log(e4xx4)(52x(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+1log(xlog(5+2x+(4+x)log(e4xx4)))dx=(16(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))+27x(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))+2x2(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))3xlog(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))x2log(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4))))dx+1log(xlog(5+2x+(4+x)log(e4xx4)))dx=2x2(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx3xlog(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+161(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+27x(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dxx2log(e4xx4)(5+2x+4log(e4xx4)+xlog(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+1log(xlog(5+2x+(4+x)log(e4xx4)))dx=2x2(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx3xlog(e4xx4)(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+161(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+27x(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dxx2log(e4xx4)(5+2x+(4+x)log(e4xx4))(xlog(5+2x+(4+x)log(e4xx4)))log2(xlog(5+2x+(4+x)log(e4xx4)))dx+1log(xlog(5+2x+(4+x)log(e4xx4)))dx

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 29, normalized size = 0.94 xlog(xlog(5+2x+(4+x)log(e4xx4)))

Antiderivative was successfully verified.

[In]

Integrate[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] +
(-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)
*Log[E^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log
[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]

[Out]

x/Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]

________________________________________________________________________________________

fricas [A]  time = 0.86, size = 28, normalized size = 0.90 xlog(xlog((x+4)log(x4e(4x))+2x5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="fricas")

[Out]

x/log(x - log((x + 4)*log(x^4*e^(4*x)) + 2*x - 5))

________________________________________________________________________________________

giac [A]  time = 6.72, size = 32, normalized size = 1.03 xlog(xlog(4x2+xlog(x4)+18x+4log(x4)5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="giac")

[Out]

x/log(x - log(4*x^2 + x*log(x^4) + 18*x + 4*log(x^4) - 5))

________________________________________________________________________________________

maple [C]  time = 0.58, size = 329, normalized size = 10.61




method result size



risch xln(ln((4+x)(4ln(x)+4ln(ex)iπcsgn(ie2x)(csgn(ie2x)+csgn(iex))22iπcsgn(ie3x)(csgn(ie3x)+csgn(ie2x))(csgn(ie3x)+csgn(iex))2iπcsgn(ie4x)(csgn(ie4x)+csgn(ie3x))(csgn(ie4x)+csgn(iex))2iπcsgn(ix2)(csgn(ix2)+csgn(ix))22iπcsgn(ix3)(csgn(ix3)+csgn(ix2))(csgn(ix3)+csgn(ix))2iπcsgn(ix4)(csgn(ix4)+csgn(ix3))(csgn(ix4)+csgn(ix))2iπcsgn(ix4e4x)(csgn(ix4e4x)+csgn(ix4))(csgn(ix4e4x)+csgn(ie4x))2)+2x5)+x) 329



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((((4+x)*ln(x^4*exp(x)^4)+2*x-5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)*l
n(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*ln(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*ln(x^4*exp(x)^4)+2*x-
5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)/ln(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5
)+x)^2,x,method=_RETURNVERBOSE)

[Out]

x/ln(-ln((4+x)*(4*ln(x)+4*ln(exp(x))-1/2*I*Pi*csgn(I*exp(2*x))*(-csgn(I*exp(2*x))+csgn(I*exp(x)))^2-1/2*I*Pi*c
sgn(I*exp(3*x))*(-csgn(I*exp(3*x))+csgn(I*exp(2*x)))*(-csgn(I*exp(3*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*exp(4*
x))*(-csgn(I*exp(4*x))+csgn(I*exp(3*x)))*(-csgn(I*exp(4*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)
+csgn(I*x))^2-1/2*I*Pi*csgn(I*x^3)*(-csgn(I*x^3)+csgn(I*x^2))*(-csgn(I*x^3)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4)*(-
csgn(I*x^4)+csgn(I*x^3))*(-csgn(I*x^4)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4*exp(4*x))*(-csgn(I*x^4*exp(4*x))+csgn(I*
x^4))*(-csgn(I*x^4*exp(4*x))+csgn(I*exp(4*x))))+2*x-5)+x)

________________________________________________________________________________________

maxima [A]  time = 0.69, size = 27, normalized size = 0.87 xlog(xlog(4x2+4(x+4)log(x)+18x5))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="maxima")

[Out]

x/log(x - log(4*x^2 + 4*(x + 4)*log(x) + 18*x - 5))

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.03 27xln(x4e4x)(x2+3x)+2x2ln(xln(2x+ln(x4e4x)(x+4)5))(5xln(x4e4x)(x2+4x)+ln(2x+ln(x4e4x)(x+4)5)(2x+ln(x4e4x)(x+4)5)2x2)+16ln(xln(2x+ln(x4e4x)(x+4)5))2(5xln(x4e4x)(x2+4x)+ln(2x+ln(x4e4x)(x+4)5)(2x+ln(x4e4x)(x+4)5)2x2)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
 - 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)),x)

[Out]

int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
 - 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 Timed out

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((((4+x)*ln(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)
-2*x**2+5*x)*ln(-ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)+(x**2+3*x)*ln(x**4*exp(x)**4)-2*x**2-27*x-16)/(((4+x)*l
n(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)-2*x**2+5*x)/ln(-ln(
(4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)**2,x)

[Out]

Timed out

________________________________________________________________________________________