3.85.84
Optimal. Leaf size=31
________________________________________________________________________________________
Rubi [F] time = 7.00, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E
^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 +
2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]
[Out]
16*Defer[Int][1/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x -
Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 27*Defer[Int][x/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x -
Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + 2*Defer[
Int][x^2/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5
+ 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] - 3*Defer[Int][(x*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)
*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x]
- Defer[Int][(x^2*Log[E^(4*x)*x^4])/((-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*(x - Log[-5 + 2*x + (4 + x)*Log[E^
(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2), x] + Defer[Int][Log[x - Log[-5 + 2*x + (4 +
x)*Log[E^(4*x)*x^4]]]^(-1), x]
Rubi steps
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 29, normalized size = 0.94
Antiderivative was successfully verified.
[In]
Integrate[(-16 - 27*x - 2*x^2 + (3*x + x^2)*Log[E^(4*x)*x^4] + (5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] +
(-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)
*Log[E^(4*x)*x^4]]])/((5*x - 2*x^2 + (-4*x - x^2)*Log[E^(4*x)*x^4] + (-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4])*Log
[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]])*Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]^2),x]
[Out]
x/Log[x - Log[-5 + 2*x + (4 + x)*Log[E^(4*x)*x^4]]]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 28, normalized size = 0.90
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="fricas")
[Out]
x/log(x - log((x + 4)*log(x^4*e^(4*x)) + 2*x - 5))
________________________________________________________________________________________
giac [A] time = 6.72, size = 32, normalized size = 1.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="giac")
[Out]
x/log(x - log(4*x^2 + x*log(x^4) + 18*x + 4*log(x^4) - 5))
________________________________________________________________________________________
maple [C] time = 0.58, size = 329, normalized size = 10.61
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((((4+x)*ln(x^4*exp(x)^4)+2*x-5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)*l
n(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*ln(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*ln(x^4*exp(x)^4)+2*x-
5)*ln((4+x)*ln(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*ln(x^4*exp(x)^4)-2*x^2+5*x)/ln(-ln((4+x)*ln(x^4*exp(x)^4)+2*x-5
)+x)^2,x,method=_RETURNVERBOSE)
[Out]
x/ln(-ln((4+x)*(4*ln(x)+4*ln(exp(x))-1/2*I*Pi*csgn(I*exp(2*x))*(-csgn(I*exp(2*x))+csgn(I*exp(x)))^2-1/2*I*Pi*c
sgn(I*exp(3*x))*(-csgn(I*exp(3*x))+csgn(I*exp(2*x)))*(-csgn(I*exp(3*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*exp(4*
x))*(-csgn(I*exp(4*x))+csgn(I*exp(3*x)))*(-csgn(I*exp(4*x))+csgn(I*exp(x)))-1/2*I*Pi*csgn(I*x^2)*(-csgn(I*x^2)
+csgn(I*x))^2-1/2*I*Pi*csgn(I*x^3)*(-csgn(I*x^3)+csgn(I*x^2))*(-csgn(I*x^3)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4)*(-
csgn(I*x^4)+csgn(I*x^3))*(-csgn(I*x^4)+csgn(I*x))-1/2*I*Pi*csgn(I*x^4*exp(4*x))*(-csgn(I*x^4*exp(4*x))+csgn(I*
x^4))*(-csgn(I*x^4*exp(4*x))+csgn(I*exp(4*x))))+2*x-5)+x)
________________________________________________________________________________________
maxima [A] time = 0.69, size = 27, normalized size = 0.87
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((4+x)*log(x^4*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*
x^2+5*x)*log(-log((4+x)*log(x^4*exp(x)^4)+2*x-5)+x)+(x^2+3*x)*log(x^4*exp(x)^4)-2*x^2-27*x-16)/(((4+x)*log(x^4
*exp(x)^4)+2*x-5)*log((4+x)*log(x^4*exp(x)^4)+2*x-5)+(-x^2-4*x)*log(x^4*exp(x)^4)-2*x^2+5*x)/log(-log((4+x)*lo
g(x^4*exp(x)^4)+2*x-5)+x)^2,x, algorithm="maxima")
[Out]
x/log(x - log(4*x^2 + 4*(x + 4)*log(x) + 18*x - 5))
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
- 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)),x)
[Out]
int(-(27*x - log(x^4*exp(4*x))*(3*x + x^2) + 2*x^2 - log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))*(5*x -
log(x^4*exp(4*x))*(4*x + x^2) + log(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5)
- 2*x^2) + 16)/(log(x - log(2*x + log(x^4*exp(4*x))*(x + 4) - 5))^2*(5*x - log(x^4*exp(4*x))*(4*x + x^2) + lo
g(2*x + log(x^4*exp(4*x))*(x + 4) - 5)*(2*x + log(x^4*exp(4*x))*(x + 4) - 5) - 2*x^2)), x)
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((((4+x)*ln(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)
-2*x**2+5*x)*ln(-ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)+(x**2+3*x)*ln(x**4*exp(x)**4)-2*x**2-27*x-16)/(((4+x)*l
n(x**4*exp(x)**4)+2*x-5)*ln((4+x)*ln(x**4*exp(x)**4)+2*x-5)+(-x**2-4*x)*ln(x**4*exp(x)**4)-2*x**2+5*x)/ln(-ln(
(4+x)*ln(x**4*exp(x)**4)+2*x-5)+x)**2,x)
[Out]
Timed out
________________________________________________________________________________________