Optimal. Leaf size=26 \[ \log \left (\frac {1}{-4 \log (x)+e^x (4+\log (x))-\frac {x}{-1+x+\log (x)}}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 52.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4-10 x+4 x^2+e^x \left (-1-2 x+7 x^2-4 x^3\right )+\left (-8+9 x+e^x \left (2+5 x-6 x^2-x^3\right )\right ) \log (x)+\left (4+e^x \left (-1-2 x-2 x^2\right )\right ) \log ^2(x)-e^x x \log ^3(x)}{x^2-x^3+e^x \left (4 x-8 x^2+4 x^3\right )+\left (-4 x+7 x^2-4 x^3+e^x \left (-7 x+6 x^2+x^3\right )\right ) \log (x)+\left (8 x-8 x^2+e^x \left (2 x+2 x^2\right )\right ) \log ^2(x)+\left (-4 x+e^x x\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-4+10 x-4 x^2+e^x (-1+x)^2 (1+4 x)+\left (8-9 x+e^x \left (-2-5 x+6 x^2+x^3\right )\right ) \log (x)+\left (-4+e^x \left (1+2 x+2 x^2\right )\right ) \log ^2(x)+e^x x \log ^3(x)}{x (1-x-\log (x)) \left (4 e^x (-1+x)-x+\left (4-4 x+e^x (3+x)\right ) \log (x)+\left (-4+e^x\right ) \log ^2(x)\right )} \, dx\\ &=\int \left (\frac {-1-4 x-x \log (x)}{x (4+\log (x))}-\frac {-16+39 x-19 x^2+4 x^3+32 \log (x)-17 x \log (x)-29 x^2 \log (x)+17 x^3 \log (x)-16 \log ^2(x)-29 x \log ^2(x)+25 x^2 \log ^2(x)+4 x^3 \log ^2(x)+8 x \log ^3(x)+8 x^2 \log ^3(x)+4 x \log ^4(x)}{x (4+\log (x)) (-1+x+\log (x)) \left (-4 e^x-x+4 e^x x+4 \log (x)+3 e^x \log (x)-4 x \log (x)+e^x x \log (x)-4 \log ^2(x)+e^x \log ^2(x)\right )}\right ) \, dx\\ &=\int \frac {-1-4 x-x \log (x)}{x (4+\log (x))} \, dx-\int \frac {-16+39 x-19 x^2+4 x^3+32 \log (x)-17 x \log (x)-29 x^2 \log (x)+17 x^3 \log (x)-16 \log ^2(x)-29 x \log ^2(x)+25 x^2 \log ^2(x)+4 x^3 \log ^2(x)+8 x \log ^3(x)+8 x^2 \log ^3(x)+4 x \log ^4(x)}{x (4+\log (x)) (-1+x+\log (x)) \left (-4 e^x-x+4 e^x x+4 \log (x)+3 e^x \log (x)-4 x \log (x)+e^x x \log (x)-4 \log ^2(x)+e^x \log ^2(x)\right )} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.23, size = 66, normalized size = 2.54 \begin {gather*} \log (1-x-\log (x))-\log \left (-4 e^x-x+4 e^x x+4 \log (x)+3 e^x \log (x)-4 x \log (x)+e^x x \log (x)-4 \log ^2(x)+e^x \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 58, normalized size = 2.23 \begin {gather*} \log \left (x + \log \relax (x) - 1\right ) - \log \left (\frac {{\left (e^{x} - 4\right )} \log \relax (x)^{2} + 4 \, {\left (x - 1\right )} e^{x} + {\left ({\left (x + 3\right )} e^{x} - 4 \, x + 4\right )} \log \relax (x) - x}{e^{x} - 4}\right ) - \log \left (e^{x} - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.69, size = 57, normalized size = 2.19 \begin {gather*} -\log \left (x e^{x} \log \relax (x) + e^{x} \log \relax (x)^{2} + 4 \, x e^{x} - 4 \, x \log \relax (x) + 3 \, e^{x} \log \relax (x) - 4 \, \log \relax (x)^{2} - x - 4 \, e^{x} + 4 \, \log \relax (x)\right ) + \log \left (x + \log \relax (x) - 1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 65, normalized size = 2.50
method | result | size |
risch | \(-\ln \left ({\mathrm e}^{x}-4\right )+\ln \left (-1+\ln \relax (x )+x \right )-\ln \left (\ln \relax (x )^{2}+\frac {\left ({\mathrm e}^{x} x -4 x +3 \,{\mathrm e}^{x}+4\right ) \ln \relax (x )}{{\mathrm e}^{x}-4}+\frac {4 \,{\mathrm e}^{x} x -x -4 \,{\mathrm e}^{x}}{{\mathrm e}^{x}-4}\right )\) | \(65\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 64, normalized size = 2.46 \begin {gather*} -\log \left (\frac {{\left ({\left (x + 3\right )} \log \relax (x) + \log \relax (x)^{2} + 4 \, x - 4\right )} e^{x} - 4 \, {\left (x - 1\right )} \log \relax (x) - 4 \, \log \relax (x)^{2} - x}{{\left (x + 3\right )} \log \relax (x) + \log \relax (x)^{2} + 4 \, x - 4}\right ) - \log \left (\log \relax (x) + 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int \frac {10\,x-\ln \relax (x)\,\left (9\,x+{\mathrm {e}}^x\,\left (-x^3-6\,x^2+5\,x+2\right )-8\right )+{\ln \relax (x)}^2\,\left ({\mathrm {e}}^x\,\left (2\,x^2+2\,x+1\right )-4\right )-4\,x^2+{\mathrm {e}}^x\,\left (4\,x^3-7\,x^2+2\,x+1\right )+x\,{\mathrm {e}}^x\,{\ln \relax (x)}^3-4}{\ln \relax (x)\,\left (4\,x-{\mathrm {e}}^x\,\left (x^3+6\,x^2-7\,x\right )-7\,x^2+4\,x^3\right )+{\ln \relax (x)}^3\,\left (4\,x-x\,{\mathrm {e}}^x\right )-{\ln \relax (x)}^2\,\left (8\,x+{\mathrm {e}}^x\,\left (2\,x^2+2\,x\right )-8\,x^2\right )-x^2+x^3-{\mathrm {e}}^x\,\left (4\,x^3-8\,x^2+4\,x\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 4.01, size = 53, normalized size = 2.04 \begin {gather*} - \log {\left (\frac {- 4 x \log {\relax (x )} - x - 4 \log {\relax (x )}^{2} + 4 \log {\relax (x )}}{x \log {\relax (x )} + 4 x + \log {\relax (x )}^{2} + 3 \log {\relax (x )} - 4} + e^{x} \right )} - \log {\left (\log {\relax (x )} + 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________