3.85.87
Optimal. Leaf size=26
________________________________________________________________________________________
Rubi [F] time = 52.73, antiderivative size = 0, normalized size of antiderivative = 0.00,
number of steps used = 0, number of rules used = 0, integrand size = 0, = 0.000, Rules used =
{}
Verification is not applicable to the result.
[In]
Int[(4 - 10*x + 4*x^2 + E^x*(-1 - 2*x + 7*x^2 - 4*x^3) + (-8 + 9*x + E^x*(2 + 5*x - 6*x^2 - x^3))*Log[x] + (4
+ E^x*(-1 - 2*x - 2*x^2))*Log[x]^2 - E^x*x*Log[x]^3)/(x^2 - x^3 + E^x*(4*x - 8*x^2 + 4*x^3) + (-4*x + 7*x^2 -
4*x^3 + E^x*(-7*x + 6*x^2 + x^3))*Log[x] + (8*x - 8*x^2 + E^x*(2*x + 2*x^2))*Log[x]^2 + (-4*x + E^x*x)*Log[x]^
3),x]
[Out]
-x - Log[4 + Log[x]] - 39*Defer[Int][1/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3
+ x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 16*Defer[Int][1/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x)
- x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 19*Defer[Int][x/((4 + Log[x])*(-1 + x + Log
[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][x^2/((4 +
Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] +
17*Defer[Int][Log[x]/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-
4 + E^x)*Log[x]^2)), x] - 32*Defer[Int][Log[x]/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*
x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 29*Defer[Int][(x*Log[x])/((4 + Log[x])*(-1 + x + Log[x])
*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 17*Defer[Int][(x^2*Log[x])
/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)),
x] + 29*Defer[Int][Log[x]^2/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log
[x] + (-4 + E^x)*Log[x]^2)), x] + 16*Defer[Int][Log[x]^2/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x
+ (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 25*Defer[Int][(x*Log[x]^2)/((4 + Log[x])*(-1 +
x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][(
x^2*Log[x]^2)/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x
)*Log[x]^2)), x] - 8*Defer[Int][Log[x]^3/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*
(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 8*Defer[Int][(x*Log[x]^3)/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x
*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][Log[x]^4/((4 + Log[x
])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.23, size = 66, normalized size = 2.54
Antiderivative was successfully verified.
[In]
Integrate[(4 - 10*x + 4*x^2 + E^x*(-1 - 2*x + 7*x^2 - 4*x^3) + (-8 + 9*x + E^x*(2 + 5*x - 6*x^2 - x^3))*Log[x]
+ (4 + E^x*(-1 - 2*x - 2*x^2))*Log[x]^2 - E^x*x*Log[x]^3)/(x^2 - x^3 + E^x*(4*x - 8*x^2 + 4*x^3) + (-4*x + 7*
x^2 - 4*x^3 + E^x*(-7*x + 6*x^2 + x^3))*Log[x] + (8*x - 8*x^2 + E^x*(2*x + 2*x^2))*Log[x]^2 + (-4*x + E^x*x)*L
og[x]^3),x]
[Out]
Log[1 - x - Log[x]] - Log[-4*E^x - x + 4*E^x*x + 4*Log[x] + 3*E^x*Log[x] - 4*x*Log[x] + E^x*x*Log[x] - 4*Log[x
]^2 + E^x*Log[x]^2]
________________________________________________________________________________________
fricas [B] time = 0.82, size = 58, normalized size = 2.23
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="fricas")
[Out]
log(x + log(x) - 1) - log(((e^x - 4)*log(x)^2 + 4*(x - 1)*e^x + ((x + 3)*e^x - 4*x + 4)*log(x) - x)/(e^x - 4))
- log(e^x - 4)
________________________________________________________________________________________
giac [B] time = 0.69, size = 57, normalized size = 2.19
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="giac")
[Out]
-log(x*e^x*log(x) + e^x*log(x)^2 + 4*x*e^x - 4*x*log(x) + 3*e^x*log(x) - 4*log(x)^2 - x - 4*e^x + 4*log(x)) +
log(x + log(x) - 1)
________________________________________________________________________________________
maple [B] time = 0.06, size = 65, normalized size = 2.50
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((-x*exp(x)*ln(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*ln(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*ln(x)+(-4*x^3+7*x^2
-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*ln(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*ln(x)^2+((x^3+6*x^2-7*x)*e
xp(x)-4*x^3+7*x^2-4*x)*ln(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x,method=_RETURNVERBOSE)
[Out]
-ln(exp(x)-4)+ln(-1+ln(x)+x)-ln(ln(x)^2+(exp(x)*x-4*x+3*exp(x)+4)/(exp(x)-4)*ln(x)+(4*exp(x)*x-x-4*exp(x))/(ex
p(x)-4))
________________________________________________________________________________________
maxima [B] time = 0.45, size = 64, normalized size = 2.46
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="maxima")
[Out]
-log((((x + 3)*log(x) + log(x)^2 + 4*x - 4)*e^x - 4*(x - 1)*log(x) - 4*log(x)^2 - x)/((x + 3)*log(x) + log(x)^
2 + 4*x - 4)) - log(log(x) + 4)
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((10*x - log(x)*(9*x + exp(x)*(5*x - 6*x^2 - x^3 + 2) - 8) + log(x)^2*(exp(x)*(2*x + 2*x^2 + 1) - 4) - 4*x^
2 + exp(x)*(2*x - 7*x^2 + 4*x^3 + 1) + x*exp(x)*log(x)^3 - 4)/(log(x)*(4*x - exp(x)*(6*x^2 - 7*x + x^3) - 7*x^
2 + 4*x^3) + log(x)^3*(4*x - x*exp(x)) - log(x)^2*(8*x + exp(x)*(2*x + 2*x^2) - 8*x^2) - x^2 + x^3 - exp(x)*(4
*x - 8*x^2 + 4*x^3)),x)
[Out]
int((10*x - log(x)*(9*x + exp(x)*(5*x - 6*x^2 - x^3 + 2) - 8) + log(x)^2*(exp(x)*(2*x + 2*x^2 + 1) - 4) - 4*x^
2 + exp(x)*(2*x - 7*x^2 + 4*x^3 + 1) + x*exp(x)*log(x)^3 - 4)/(log(x)*(4*x - exp(x)*(6*x^2 - 7*x + x^3) - 7*x^
2 + 4*x^3) + log(x)^3*(4*x - x*exp(x)) - log(x)^2*(8*x + exp(x)*(2*x + 2*x^2) - 8*x^2) - x^2 + x^3 - exp(x)*(4
*x - 8*x^2 + 4*x^3)), x)
________________________________________________________________________________________
sympy [B] time = 4.01, size = 53, normalized size = 2.04
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate((-x*exp(x)*ln(x)**3+((-2*x**2-2*x-1)*exp(x)+4)*ln(x)**2+((-x**3-6*x**2+5*x+2)*exp(x)+9*x-8)*ln(x)+(-
4*x**3+7*x**2-2*x-1)*exp(x)+4*x**2-10*x+4)/((exp(x)*x-4*x)*ln(x)**3+((2*x**2+2*x)*exp(x)-8*x**2+8*x)*ln(x)**2+
((x**3+6*x**2-7*x)*exp(x)-4*x**3+7*x**2-4*x)*ln(x)+(4*x**3-8*x**2+4*x)*exp(x)-x**3+x**2),x)
[Out]
-log((-4*x*log(x) - x - 4*log(x)**2 + 4*log(x))/(x*log(x) + 4*x + log(x)**2 + 3*log(x) - 4) + exp(x)) - log(lo
g(x) + 4)
________________________________________________________________________________________