3.85.87 410x+4x2+ex(12x+7x24x3)+(8+9x+ex(2+5x6x2x3))log(x)+(4+ex(12x2x2))log2(x)exxlog3(x)x2x3+ex(4x8x2+4x3)+(4x+7x24x3+ex(7x+6x2+x3))log(x)+(8x8x2+ex(2x+2x2))log2(x)+(4x+exx)log3(x)dx

Optimal. Leaf size=26 log(14log(x)+ex(4+log(x))x1+x+log(x))

________________________________________________________________________________________

Rubi [F]  time = 52.73, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, number of rulesintegrand size = 0.000, Rules used = {} 410x+4x2+ex(12x+7x24x3)+(8+9x+ex(2+5x6x2x3))log(x)+(4+ex(12x2x2))log2(x)exxlog3(x)x2x3+ex(4x8x2+4x3)+(4x+7x24x3+ex(7x+6x2+x3))log(x)+(8x8x2+ex(2x+2x2))log2(x)+(4x+exx)log3(x)dx

Verification is not applicable to the result.

[In]

Int[(4 - 10*x + 4*x^2 + E^x*(-1 - 2*x + 7*x^2 - 4*x^3) + (-8 + 9*x + E^x*(2 + 5*x - 6*x^2 - x^3))*Log[x] + (4
+ E^x*(-1 - 2*x - 2*x^2))*Log[x]^2 - E^x*x*Log[x]^3)/(x^2 - x^3 + E^x*(4*x - 8*x^2 + 4*x^3) + (-4*x + 7*x^2 -
4*x^3 + E^x*(-7*x + 6*x^2 + x^3))*Log[x] + (8*x - 8*x^2 + E^x*(2*x + 2*x^2))*Log[x]^2 + (-4*x + E^x*x)*Log[x]^
3),x]

[Out]

-x - Log[4 + Log[x]] - 39*Defer[Int][1/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3
 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 16*Defer[Int][1/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x)
- x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 19*Defer[Int][x/((4 + Log[x])*(-1 + x + Log
[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][x^2/((4 +
 Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] +
17*Defer[Int][Log[x]/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-
4 + E^x)*Log[x]^2)), x] - 32*Defer[Int][Log[x]/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*
x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] + 29*Defer[Int][(x*Log[x])/((4 + Log[x])*(-1 + x + Log[x])
*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 17*Defer[Int][(x^2*Log[x])
/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)),
 x] + 29*Defer[Int][Log[x]^2/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log
[x] + (-4 + E^x)*Log[x]^2)), x] + 16*Defer[Int][Log[x]^2/(x*(4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x
 + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 25*Defer[Int][(x*Log[x]^2)/((4 + Log[x])*(-1 +
 x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][(
x^2*Log[x]^2)/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x
)*Log[x]^2)), x] - 8*Defer[Int][Log[x]^3/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*
(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 8*Defer[Int][(x*Log[x]^3)/((4 + Log[x])*(-1 + x + Log[x])*(4*E^x
*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x] - 4*Defer[Int][Log[x]^4/((4 + Log[x
])*(-1 + x + Log[x])*(4*E^x*(-1 + x) - x + (4 - 4*x + E^x*(3 + x))*Log[x] + (-4 + E^x)*Log[x]^2)), x]

Rubi steps

integral=4+10x4x2+ex(1+x)2(1+4x)+(89x+ex(25x+6x2+x3))log(x)+(4+ex(1+2x+2x2))log2(x)+exxlog3(x)x(1xlog(x))(4ex(1+x)x+(44x+ex(3+x))log(x)+(4+ex)log2(x))dx=(14xxlog(x)x(4+log(x))16+39x19x2+4x3+32log(x)17xlog(x)29x2log(x)+17x3log(x)16log2(x)29xlog2(x)+25x2log2(x)+4x3log2(x)+8xlog3(x)+8x2log3(x)+4xlog4(x)x(4+log(x))(1+x+log(x))(4exx+4exx+4log(x)+3exlog(x)4xlog(x)+exxlog(x)4log2(x)+exlog2(x)))dx=14xxlog(x)x(4+log(x))dx16+39x19x2+4x3+32log(x)17xlog(x)29x2log(x)+17x3log(x)16log2(x)29xlog2(x)+25x2log2(x)+4x3log2(x)+8xlog3(x)+8x2log3(x)+4xlog4(x)x(4+log(x))(1+x+log(x))(4exx+4exx+4log(x)+3exlog(x)4xlog(x)+exxlog(x)4log2(x)+exlog2(x))dx=Rest of rules removed due to large latex content

________________________________________________________________________________________

Mathematica [B]  time = 0.23, size = 66, normalized size = 2.54 log(1xlog(x))log(4exx+4exx+4log(x)+3exlog(x)4xlog(x)+exxlog(x)4log2(x)+exlog2(x))

Antiderivative was successfully verified.

[In]

Integrate[(4 - 10*x + 4*x^2 + E^x*(-1 - 2*x + 7*x^2 - 4*x^3) + (-8 + 9*x + E^x*(2 + 5*x - 6*x^2 - x^3))*Log[x]
 + (4 + E^x*(-1 - 2*x - 2*x^2))*Log[x]^2 - E^x*x*Log[x]^3)/(x^2 - x^3 + E^x*(4*x - 8*x^2 + 4*x^3) + (-4*x + 7*
x^2 - 4*x^3 + E^x*(-7*x + 6*x^2 + x^3))*Log[x] + (8*x - 8*x^2 + E^x*(2*x + 2*x^2))*Log[x]^2 + (-4*x + E^x*x)*L
og[x]^3),x]

[Out]

Log[1 - x - Log[x]] - Log[-4*E^x - x + 4*E^x*x + 4*Log[x] + 3*E^x*Log[x] - 4*x*Log[x] + E^x*x*Log[x] - 4*Log[x
]^2 + E^x*Log[x]^2]

________________________________________________________________________________________

fricas [B]  time = 0.82, size = 58, normalized size = 2.23 log(x+log(x)1)log((ex4)log(x)2+4(x1)ex+((x+3)ex4x+4)log(x)xex4)log(ex4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="fricas")

[Out]

log(x + log(x) - 1) - log(((e^x - 4)*log(x)^2 + 4*(x - 1)*e^x + ((x + 3)*e^x - 4*x + 4)*log(x) - x)/(e^x - 4))
 - log(e^x - 4)

________________________________________________________________________________________

giac [B]  time = 0.69, size = 57, normalized size = 2.19 log(xexlog(x)+exlog(x)2+4xex4xlog(x)+3exlog(x)4log(x)2x4ex+4log(x))+log(x+log(x)1)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="giac")

[Out]

-log(x*e^x*log(x) + e^x*log(x)^2 + 4*x*e^x - 4*x*log(x) + 3*e^x*log(x) - 4*log(x)^2 - x - 4*e^x + 4*log(x)) +
log(x + log(x) - 1)

________________________________________________________________________________________

maple [B]  time = 0.06, size = 65, normalized size = 2.50




method result size



risch ln(ex4)+ln(1+ln(x)+x)ln(ln(x)2+(exx4x+3ex+4)ln(x)ex4+4exxx4exex4) 65



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-x*exp(x)*ln(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*ln(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*ln(x)+(-4*x^3+7*x^2
-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*ln(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*ln(x)^2+((x^3+6*x^2-7*x)*e
xp(x)-4*x^3+7*x^2-4*x)*ln(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x,method=_RETURNVERBOSE)

[Out]

-ln(exp(x)-4)+ln(-1+ln(x)+x)-ln(ln(x)^2+(exp(x)*x-4*x+3*exp(x)+4)/(exp(x)-4)*ln(x)+(4*exp(x)*x-x-4*exp(x))/(ex
p(x)-4))

________________________________________________________________________________________

maxima [B]  time = 0.45, size = 64, normalized size = 2.46 log(((x+3)log(x)+log(x)2+4x4)ex4(x1)log(x)4log(x)2x(x+3)log(x)+log(x)2+4x4)log(log(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(x)*log(x)^3+((-2*x^2-2*x-1)*exp(x)+4)*log(x)^2+((-x^3-6*x^2+5*x+2)*exp(x)+9*x-8)*log(x)+(-4*
x^3+7*x^2-2*x-1)*exp(x)+4*x^2-10*x+4)/((exp(x)*x-4*x)*log(x)^3+((2*x^2+2*x)*exp(x)-8*x^2+8*x)*log(x)^2+((x^3+6
*x^2-7*x)*exp(x)-4*x^3+7*x^2-4*x)*log(x)+(4*x^3-8*x^2+4*x)*exp(x)-x^3+x^2),x, algorithm="maxima")

[Out]

-log((((x + 3)*log(x) + log(x)^2 + 4*x - 4)*e^x - 4*(x - 1)*log(x) - 4*log(x)^2 - x)/((x + 3)*log(x) + log(x)^
2 + 4*x - 4)) - log(log(x) + 4)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.04 10xln(x)(9x+ex(x36x2+5x+2)8)+ln(x)2(ex(2x2+2x+1)4)4x2+ex(4x37x2+2x+1)+xexln(x)34ln(x)(4xex(x3+6x27x)7x2+4x3)+ln(x)3(4xxex)ln(x)2(8x+ex(2x2+2x)8x2)x2+x3ex(4x38x2+4x)dx

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((10*x - log(x)*(9*x + exp(x)*(5*x - 6*x^2 - x^3 + 2) - 8) + log(x)^2*(exp(x)*(2*x + 2*x^2 + 1) - 4) - 4*x^
2 + exp(x)*(2*x - 7*x^2 + 4*x^3 + 1) + x*exp(x)*log(x)^3 - 4)/(log(x)*(4*x - exp(x)*(6*x^2 - 7*x + x^3) - 7*x^
2 + 4*x^3) + log(x)^3*(4*x - x*exp(x)) - log(x)^2*(8*x + exp(x)*(2*x + 2*x^2) - 8*x^2) - x^2 + x^3 - exp(x)*(4
*x - 8*x^2 + 4*x^3)),x)

[Out]

int((10*x - log(x)*(9*x + exp(x)*(5*x - 6*x^2 - x^3 + 2) - 8) + log(x)^2*(exp(x)*(2*x + 2*x^2 + 1) - 4) - 4*x^
2 + exp(x)*(2*x - 7*x^2 + 4*x^3 + 1) + x*exp(x)*log(x)^3 - 4)/(log(x)*(4*x - exp(x)*(6*x^2 - 7*x + x^3) - 7*x^
2 + 4*x^3) + log(x)^3*(4*x - x*exp(x)) - log(x)^2*(8*x + exp(x)*(2*x + 2*x^2) - 8*x^2) - x^2 + x^3 - exp(x)*(4
*x - 8*x^2 + 4*x^3)), x)

________________________________________________________________________________________

sympy [B]  time = 4.01, size = 53, normalized size = 2.04 log(4xlog(x)x4log(x)2+4log(x)xlog(x)+4x+log(x)2+3log(x)4+ex)log(log(x)+4)

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-x*exp(x)*ln(x)**3+((-2*x**2-2*x-1)*exp(x)+4)*ln(x)**2+((-x**3-6*x**2+5*x+2)*exp(x)+9*x-8)*ln(x)+(-
4*x**3+7*x**2-2*x-1)*exp(x)+4*x**2-10*x+4)/((exp(x)*x-4*x)*ln(x)**3+((2*x**2+2*x)*exp(x)-8*x**2+8*x)*ln(x)**2+
((x**3+6*x**2-7*x)*exp(x)-4*x**3+7*x**2-4*x)*ln(x)+(4*x**3-8*x**2+4*x)*exp(x)-x**3+x**2),x)

[Out]

-log((-4*x*log(x) - x - 4*log(x)**2 + 4*log(x))/(x*log(x) + 4*x + log(x)**2 + 3*log(x) - 4) + exp(x)) - log(lo
g(x) + 4)

________________________________________________________________________________________