Optimal. Leaf size=26 \[ -3+e^2-8 x+\frac {(4-x)^4}{16 (-2+3 x)^2} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 35, normalized size of antiderivative = 1.35, number of steps used = 2, number of rules used = 1, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.027, Rules used = {2074} \begin {gather*} \frac {x^2}{144}-\frac {875 x}{108}+\frac {250}{81 (2-3 x)}+\frac {625}{81 (2-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {875}{108}+\frac {x}{72}-\frac {1250}{27 (-2+3 x)^3}+\frac {250}{27 (-2+3 x)^2}\right ) \, dx\\ &=\frac {625}{81 (2-3 x)^2}+\frac {250}{81 (2-3 x)}-\frac {875 x}{108}+\frac {x^2}{144}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 31, normalized size = 1.19 \begin {gather*} \frac {15328-45984 x+63000 x^2-31536 x^3+27 x^4}{432 (2-3 x)^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 34, normalized size = 1.31 \begin {gather*} \frac {9 \, x^{4} - 10512 \, x^{3} + 14004 \, x^{2} - 6000 \, x + 2000}{144 \, {\left (9 \, x^{2} - 12 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.12, size = 23, normalized size = 0.88 \begin {gather*} \frac {1}{144} \, x^{2} - \frac {875}{108} \, x - \frac {125 \, {\left (2 \, x - 3\right )}}{27 \, {\left (3 \, x - 2\right )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 25, normalized size = 0.96
method | result | size |
norman | \(\frac {66 x^{2}-73 x^{3}+\frac {1}{16} x^{4}}{\left (3 x -2\right )^{2}}\) | \(25\) |
gosper | \(\frac {x^{2} \left (x^{2}-1168 x +1056\right )}{144 x^{2}-192 x +64}\) | \(26\) |
risch | \(\frac {x^{2}}{144}-\frac {875 x}{108}+\frac {-\frac {250 x}{243}+\frac {125}{81}}{x^{2}-\frac {4}{3} x +\frac {4}{9}}\) | \(26\) |
default | \(\frac {x^{2}}{144}-\frac {875 x}{108}-\frac {250}{81 \left (3 x -2\right )}+\frac {625}{81 \left (3 x -2\right )^{2}}\) | \(28\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.36, size = 28, normalized size = 1.08 \begin {gather*} \frac {1}{144} \, x^{2} - \frac {875}{108} \, x - \frac {125 \, {\left (2 \, x - 3\right )}}{27 \, {\left (9 \, x^{2} - 12 \, x + 4\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.38, size = 23, normalized size = 0.88 \begin {gather*} \frac {x^2}{144}-\frac {\frac {250\,x}{27}-\frac {125}{9}}{{\left (3\,x-2\right )}^2}-\frac {875\,x}{108} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.09, size = 24, normalized size = 0.92 \begin {gather*} \frac {x^{2}}{144} - \frac {875 x}{108} + \frac {375 - 250 x}{243 x^{2} - 324 x + 108} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________