3.85.94 e13(3eex+7xe12+4xxx+x2)(e12+4xx(12x)+7x+3eex+xx+2x2)3xdx

Optimal. Leaf size=27 eeex+13x(7e4+12x+x)

________________________________________________________________________________________

Rubi [A]  time = 1.11, antiderivative size = 33, normalized size of antiderivative = 1.22, number of steps used = 2, number of rules used = 2, integrand size = 77, number of rulesintegrand size = 0.026, Rules used = {12, 6706} exp(13(x2e4(x+3)xx+7x+3eex))

Antiderivative was successfully verified.

[In]

Int[(E^((3*E^E^x + 7*x - E^((12 + 4*x)/x)*x + x^2)/3)*(E^((12 + 4*x)/x)*(12 - x) + 7*x + 3*E^(E^x + x)*x + 2*x
^2))/(3*x),x]

[Out]

E^((3*E^E^x + 7*x - E^((4*(3 + x))/x)*x + x^2)/3)

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 6706

Int[(F_)^(v_)*(u_), x_Symbol] :> With[{q = DerivativeDivides[v, u, x]}, Simp[(q*F^v)/Log[F], x] /;  !FalseQ[q]
] /; FreeQ[F, x]

Rubi steps

integral=13e13(3eex+7xe12+4xxx+x2)(e12+4xx(12x)+7x+3eex+xx+2x2)xdx=exp(13(3eex+7xe4(3+x)xx+x2))

________________________________________________________________________________________

Mathematica [A]  time = 1.66, size = 30, normalized size = 1.11 eeex13e4+12xx+13x(7+x)

Antiderivative was successfully verified.

[In]

Integrate[(E^((3*E^E^x + 7*x - E^((12 + 4*x)/x)*x + x^2)/3)*(E^((12 + 4*x)/x)*(12 - x) + 7*x + 3*E^(E^x + x)*x
 + 2*x^2))/(3*x),x]

[Out]

E^(E^E^x - (E^(4 + 12/x)*x)/3 + (x*(7 + x))/3)

________________________________________________________________________________________

fricas [A]  time = 0.50, size = 37, normalized size = 1.37 e(13((x2xe(4(x+3)x)+7x)ex+3e(x+ex))e(x))

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*x*exp(x)*exp(exp(x))+(12-x)*exp((4*x+12)/x)+2*x^2+7*x)*exp(exp(exp(x))-1/3*x*exp((4*x+12)/x)+
1/3*x^2+7/3*x)/x,x, algorithm="fricas")

[Out]

e^(1/3*((x^2 - x*e^(4*(x + 3)/x) + 7*x)*e^x + 3*e^(x + e^x))*e^(-x))

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 (2x2+3xe(x+ex)(x12)e(4(x+3)x)+7x)e(13x213xe(4(x+3)x)+73x+e(ex))3xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*x*exp(x)*exp(exp(x))+(12-x)*exp((4*x+12)/x)+2*x^2+7*x)*exp(exp(exp(x))-1/3*x*exp((4*x+12)/x)+
1/3*x^2+7/3*x)/x,x, algorithm="giac")

[Out]

integrate(1/3*(2*x^2 + 3*x*e^(x + e^x) - (x - 12)*e^(4*(x + 3)/x) + 7*x)*e^(1/3*x^2 - 1/3*x*e^(4*(x + 3)/x) +
7/3*x + e^(e^x))/x, x)

________________________________________________________________________________________

maple [A]  time = 0.28, size = 26, normalized size = 0.96




method result size



risch eeexxe4x+12x3+x23+7x3 26



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/3*(3*x*exp(x)*exp(exp(x))+(12-x)*exp((4*x+12)/x)+2*x^2+7*x)*exp(exp(exp(x))-1/3*x*exp((4*x+12)/x)+1/3*x^
2+7/3*x)/x,x,method=_RETURNVERBOSE)

[Out]

exp(exp(exp(x))-1/3*x*exp(4*(3+x)/x)+1/3*x^2+7/3*x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 13(2x2+3xe(x+ex)(x12)e(4(x+3)x)+7x)e(13x213xe(4(x+3)x)+73x+e(ex))xdx

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*x*exp(x)*exp(exp(x))+(12-x)*exp((4*x+12)/x)+2*x^2+7*x)*exp(exp(exp(x))-1/3*x*exp((4*x+12)/x)+
1/3*x^2+7/3*x)/x,x, algorithm="maxima")

[Out]

1/3*integrate((2*x^2 + 3*x*e^(x + e^x) - (x - 12)*e^(4*(x + 3)/x) + 7*x)*e^(1/3*x^2 - 1/3*x*e^(4*(x + 3)/x) +
7/3*x + e^(e^x))/x, x)

________________________________________________________________________________________

mupad [B]  time = 5.70, size = 27, normalized size = 1.00 e7x3exe4e12/x3ex23eeex

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp((7*x)/3 + exp(exp(x)) - (x*exp((4*x + 12)/x))/3 + x^2/3)*(7*x - exp((4*x + 12)/x)*(x - 12) + 2*x^2 +
3*x*exp(exp(x))*exp(x)))/(3*x),x)

[Out]

exp((7*x)/3)*exp(-(x*exp(4)*exp(12/x))/3)*exp(x^2/3)*exp(exp(exp(x)))

________________________________________________________________________________________

sympy [A]  time = 0.89, size = 27, normalized size = 1.00 ex23xe4x+12x3+7x3+eex

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/3*(3*x*exp(x)*exp(exp(x))+(12-x)*exp((4*x+12)/x)+2*x**2+7*x)*exp(exp(exp(x))-1/3*x*exp((4*x+12)/x)
+1/3*x**2+7/3*x)/x,x)

[Out]

exp(x**2/3 - x*exp((4*x + 12)/x)/3 + 7*x/3 + exp(exp(x)))

________________________________________________________________________________________