Optimal. Leaf size=28 \[ -x^2+\left (4 x-4 x \log \left (-e^x+\frac {2}{\log (x)}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 3.93, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-64 x-60 x \log (x)+e^x \left (30 x-32 x^2\right ) \log ^2(x)+\left (64 x+128 x \log (x)+e^x \left (-64 x+32 x^2\right ) \log ^2(x)\right ) \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\left (-64 x \log (x)+32 e^x x \log ^2(x)\right ) \log ^2\left (\frac {2-e^x \log (x)}{\log (x)}\right )}{-2 \log (x)+e^x \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {64 x+60 x \log (x)-e^x \left (30 x-32 x^2\right ) \log ^2(x)-\left (64 x+128 x \log (x)+e^x \left (-64 x+32 x^2\right ) \log ^2(x)\right ) \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\left (-64 x \log (x)+32 e^x x \log ^2(x)\right ) \log ^2\left (\frac {2-e^x \log (x)}{\log (x)}\right )}{\log (x) \left (2-e^x \log (x)\right )} \, dx\\ &=\int \left (\frac {64 x (1+x \log (x)) \left (-1+\log \left (-e^x+\frac {2}{\log (x)}\right )\right )}{\log (x) \left (-2+e^x \log (x)\right )}+2 x \left (15-16 x-32 \log \left (-e^x+\frac {2}{\log (x)}\right )+16 x \log \left (-e^x+\frac {2}{\log (x)}\right )+16 \log ^2\left (-e^x+\frac {2}{\log (x)}\right )\right )\right ) \, dx\\ &=2 \int x \left (15-16 x-32 \log \left (-e^x+\frac {2}{\log (x)}\right )+16 x \log \left (-e^x+\frac {2}{\log (x)}\right )+16 \log ^2\left (-e^x+\frac {2}{\log (x)}\right )\right ) \, dx+64 \int \frac {x (1+x \log (x)) \left (-1+\log \left (-e^x+\frac {2}{\log (x)}\right )\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=2 \int \left (-x (-15+16 x)+16 (-2+x) x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )+16 x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right )\right ) \, dx+64 \int \left (-\frac {x^2}{-2+e^x \log (x)}-\frac {x}{\log (x) \left (-2+e^x \log (x)\right )}+\frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)}+\frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )}\right ) \, dx\\ &=-(2 \int x (-15+16 x) \, dx)+32 \int (-2+x) x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-2 \int \left (-15 x+16 x^2\right ) \, dx-32 \int \frac {(3-x) x \left (2+e^x x \log ^2(x)\right )}{3 \log (x) \left (2-e^x \log (x)\right )} \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {32 x^3}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {32}{3} \int \frac {(3-x) x \left (2+e^x x \log ^2(x)\right )}{\log (x) \left (2-e^x \log (x)\right )} \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {32 x^3}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {32}{3} \int \left ((-3+x) x^2+\frac {2 (-3+x) x (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )}\right ) \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {32 x^3}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {32}{3} \int (-3+x) x^2 \, dx-\frac {64}{3} \int \frac {(-3+x) x (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {32 x^3}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {32}{3} \int \left (-3 x^2+x^3\right ) \, dx-\frac {64}{3} \int \left (-\frac {3 x (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )}+\frac {x^2 (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )}\right ) \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {8 x^4}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {64}{3} \int \frac {x^2 (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x (1+x \log (x))}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {8 x^4}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {64}{3} \int \left (\frac {x^3}{-2+e^x \log (x)}+\frac {x^2}{\log (x) \left (-2+e^x \log (x)\right )}\right ) \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx-64 \int \frac {x^2}{-2+e^x \log (x)} \, dx-64 \int \frac {x}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+64 \int \left (\frac {x^2}{-2+e^x \log (x)}+\frac {x}{\log (x) \left (-2+e^x \log (x)\right )}\right ) \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ &=15 x^2-\frac {8 x^4}{3}-32 x^2 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )+\frac {32}{3} x^3 \log \left (\frac {2-e^x \log (x)}{\log (x)}\right )-\frac {64}{3} \int \frac {x^3}{-2+e^x \log (x)} \, dx-\frac {64}{3} \int \frac {x^2}{\log (x) \left (-2+e^x \log (x)\right )} \, dx+32 \int x \log ^2\left (-\frac {-2+e^x \log (x)}{\log (x)}\right ) \, dx+64 \int \frac {x^2 \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{-2+e^x \log (x)} \, dx+64 \int \frac {x \log \left (-\frac {-2+e^x \log (x)}{\log (x)}\right )}{\log (x) \left (-2+e^x \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 48, normalized size = 1.71 \begin {gather*} 2 \left (\frac {15 x^2}{2}-16 x^2 \log \left (-e^x+\frac {2}{\log (x)}\right )+8 x^2 \log ^2\left (-e^x+\frac {2}{\log (x)}\right )\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 46, normalized size = 1.64 \begin {gather*} 16 \, x^{2} \log \left (-\frac {e^{x} \log \relax (x) - 2}{\log \relax (x)}\right )^{2} - 32 \, x^{2} \log \left (-\frac {e^{x} \log \relax (x) - 2}{\log \relax (x)}\right ) + 15 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.33, size = 71, normalized size = 2.54 \begin {gather*} 16 \, x^{2} \log \left (-e^{x} \log \relax (x) + 2\right )^{2} - 32 \, x^{2} \log \left (-e^{x} \log \relax (x) + 2\right ) \log \left (\log \relax (x)\right ) + 16 \, x^{2} \log \left (\log \relax (x)\right )^{2} - 32 \, x^{2} \log \left (-e^{x} \log \relax (x) + 2\right ) + 32 \, x^{2} \log \left (\log \relax (x)\right ) + 15 \, x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.27, size = 1209, normalized size = 43.18
method | result | size |
risch | \(-16 \pi ^{2} x^{2}+32 x^{2} \ln \left (\ln \relax (x )\right )+15 x^{2}+16 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{4}+16 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{4} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+32 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}-4 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{4} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2}-16 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}-16 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-4 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{4}-8 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{5}-8 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{5} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-32 i \pi \,x^{2} \ln \left (\ln \relax (x )\right )-16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3}+16 x^{2} \ln \left (\ln \relax (x )\right )^{2}+32 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}-4 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{6}-16 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3}-16 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{4}+16 \pi ^{2} x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{5}+16 x^{2} \ln \left ({\mathrm e}^{x} \ln \relax (x )-2\right )^{2}+32 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \ln \left (\ln \relax (x )\right )+8 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-4 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right )^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2}-16 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+16 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3} \ln \left (\ln \relax (x )\right )+\left (-32 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}+16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}-16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3}+16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+32 i \pi \,x^{2}-32 x^{2} \ln \left (\ln \relax (x )\right )-32 x^{2}\right ) \ln \left ({\mathrm e}^{x} \ln \relax (x )-2\right )+16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \ln \left (\ln \relax (x )\right )-32 i \pi \,x^{2}-16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2}-16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )+8 \pi ^{2} x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{3} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )^{2}+16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right ) \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right )-16 i \pi \,x^{2} \mathrm {csgn}\left (i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )\right ) \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \ln \left (\ln \relax (x )\right )-16 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left ({\mathrm e}^{x} \ln \relax (x )-2\right )}{\ln \relax (x )}\right )^{2} \mathrm {csgn}\left (\frac {i}{\ln \relax (x )}\right ) \ln \left (\ln \relax (x )\right )\) | \(1209\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.42, size = 62, normalized size = 2.21 \begin {gather*} 16 \, x^{2} \log \left (-e^{x} \log \relax (x) + 2\right )^{2} + 16 \, x^{2} \log \left (\log \relax (x)\right )^{2} + 32 \, x^{2} \log \left (\log \relax (x)\right ) + 15 \, x^{2} - 32 \, {\left (x^{2} \log \left (\log \relax (x)\right ) + x^{2}\right )} \log \left (-e^{x} \log \relax (x) + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.59, size = 46, normalized size = 1.64 \begin {gather*} 16\,x^2\,{\ln \left (-\frac {{\mathrm {e}}^x\,\ln \relax (x)-2}{\ln \relax (x)}\right )}^2-32\,x^2\,\ln \left (-\frac {{\mathrm {e}}^x\,\ln \relax (x)-2}{\ln \relax (x)}\right )+15\,x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.96, size = 42, normalized size = 1.50 \begin {gather*} 16 x^{2} \log {\left (\frac {- e^{x} \log {\relax (x )} + 2}{\log {\relax (x )}} \right )}^{2} - 32 x^{2} \log {\left (\frac {- e^{x} \log {\relax (x )} + 2}{\log {\relax (x )}} \right )} + 15 x^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________