Optimal. Leaf size=29 \[ -\log ^2\left (\frac {x}{5}\right )+(-4+x) \left (e^{e^x}+\log \left (-e^x+x\right )\right ) \]
________________________________________________________________________________________
Rubi [F] time = 1.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 x-x^2+e^x \left (-4 x+x^2\right )+e^{e^x} \left (-x^2+e^{2 x} \left (-4 x+x^2\right )+e^x \left (x+4 x^2-x^3\right )\right )+\left (-2 e^x+2 x\right ) \log \left (\frac {x}{5}\right )+\left (e^x x-x^2\right ) \log \left (-e^x+x\right )}{e^x x-x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (e^{e^x+x} (-4+x)+\frac {4-5 x+x^2}{e^x-x}+\frac {-4 x+e^{e^x} x+x^2-2 \log \left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )}{x}\right ) \, dx\\ &=\int e^{e^x+x} (-4+x) \, dx+\int \frac {4-5 x+x^2}{e^x-x} \, dx+\int \frac {-4 x+e^{e^x} x+x^2-2 \log \left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )}{x} \, dx\\ &=\int \left (-4 e^{e^x+x}+e^{e^x+x} x\right ) \, dx+\int \left (\frac {4}{e^x-x}-\frac {5 x}{e^x-x}+\frac {x^2}{e^x-x}\right ) \, dx+\int \left (e^{e^x}+\frac {-4 x+x^2-2 \log \left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )}{x}\right ) \, dx\\ &=-\left (4 \int e^{e^x+x} \, dx\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx+\int \frac {-4 x+x^2-2 \log \left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )}{x} \, dx\\ &=4 \int \frac {1}{e^x-x} \, dx-4 \operatorname {Subst}\left (\int e^x \, dx,x,e^x\right )-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx+\int \left (\frac {-4 x+x^2-2 \log \left (\frac {x}{5}\right )}{x}+\log \left (-e^x+x\right )\right ) \, dx+\operatorname {Subst}\left (\int \frac {e^x}{x} \, dx,x,e^x\right )\\ &=-4 e^{e^x}+\text {Ei}\left (e^x\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx+\int \frac {-4 x+x^2-2 \log \left (\frac {x}{5}\right )}{x} \, dx+\int \log \left (-e^x+x\right ) \, dx\\ &=-4 e^{e^x}+\text {Ei}\left (e^x\right )+x \log \left (-e^x+x\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx-\int \frac {\left (1-e^x\right ) x}{-e^x+x} \, dx+\int \left (-4+x-\frac {2 \log \left (\frac {x}{5}\right )}{x}\right ) \, dx\\ &=-4 e^{e^x}-4 x+\frac {x^2}{2}+\text {Ei}\left (e^x\right )+x \log \left (-e^x+x\right )-2 \int \frac {\log \left (\frac {x}{5}\right )}{x} \, dx+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx-\int \left (x+\frac {(-1+x) x}{e^x-x}\right ) \, dx\\ &=-4 e^{e^x}-4 x+\text {Ei}\left (e^x\right )-\log ^2\left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx-\int \frac {(-1+x) x}{e^x-x} \, dx+\int \frac {x^2}{e^x-x} \, dx\\ &=-4 e^{e^x}-4 x+\text {Ei}\left (e^x\right )-\log ^2\left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x^2}{e^x-x} \, dx-\int \left (-\frac {x}{e^x-x}+\frac {x^2}{e^x-x}\right ) \, dx\\ &=-4 e^{e^x}-4 x+\text {Ei}\left (e^x\right )-\log ^2\left (\frac {x}{5}\right )+x \log \left (-e^x+x\right )+4 \int \frac {1}{e^x-x} \, dx-5 \int \frac {x}{e^x-x} \, dx+\int e^{e^x+x} x \, dx+\int \frac {x}{e^x-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.39, size = 40, normalized size = 1.38 \begin {gather*} e^{e^x} (-4+x)-4 \log \left (e^x-x\right )-\log ^2\left (\frac {x}{5}\right )+x \log \left (-e^x+x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 27, normalized size = 0.93 \begin {gather*} {\left (x - 4\right )} e^{\left (e^{x}\right )} - \log \left (\frac {1}{5} \, x\right )^{2} + {\left (x - 4\right )} \log \left (x - e^{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 58, normalized size = 2.00 \begin {gather*} {\left (x e^{x} \log \left (x - e^{x}\right ) + 2 \, e^{x} \log \relax (5) \log \relax (x) - e^{x} \log \relax (x)^{2} + x e^{\left (x + e^{x}\right )} - 4 \, e^{x} \log \left (x - e^{x}\right ) - 4 \, e^{\left (x + e^{x}\right )}\right )} e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 38, normalized size = 1.31
method | result | size |
risch | \(\ln \left (x -{\mathrm e}^{x}\right ) x +x \,{\mathrm e}^{{\mathrm e}^{x}}-\ln \left (\frac {x}{5}\right )^{2}-4 \ln \left ({\mathrm e}^{x}-x \right )-4 \,{\mathrm e}^{{\mathrm e}^{x}}\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.49, size = 31, normalized size = 1.07 \begin {gather*} {\left (x - 4\right )} e^{\left (e^{x}\right )} + {\left (x - 4\right )} \log \left (x - e^{x}\right ) + 2 \, \log \relax (5) \log \relax (x) - \log \relax (x)^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {4\,x+\ln \left (\frac {x}{5}\right )\,\left (2\,x-2\,{\mathrm {e}}^x\right )+\ln \left (x-{\mathrm {e}}^x\right )\,\left (x\,{\mathrm {e}}^x-x^2\right )-{\mathrm {e}}^{{\mathrm {e}}^x}\,\left ({\mathrm {e}}^{2\,x}\,\left (4\,x-x^2\right )-{\mathrm {e}}^x\,\left (-x^3+4\,x^2+x\right )+x^2\right )-{\mathrm {e}}^x\,\left (4\,x-x^2\right )-x^2}{x\,{\mathrm {e}}^x-x^2} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 3.62, size = 31, normalized size = 1.07 \begin {gather*} x \log {\left (x - e^{x} \right )} + \left (x - 4\right ) e^{e^{x}} - \log {\left (\frac {x}{5} \right )}^{2} - 4 \log {\left (- x + e^{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________