Optimal. Leaf size=28 \[ \frac {\left (5+x^2\right ) \left (-x+\frac {1}{2 x \log (x)+(5+x+\log (x))^2}\right )}{x} \]
________________________________________________________________________________________
Rubi [F] time = 3.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-175-120 x-1254 x^3-1001 x^4-300 x^5-40 x^6-2 x^7+\left (-60-40 x+8 x^2-1000 x^3-800 x^4-200 x^5-16 x^6\right ) \log (x)+\left (-5+x^2-300 x^3-200 x^4-36 x^5\right ) \log ^2(x)+\left (-40 x^3-16 x^4\right ) \log ^3(x)-2 x^3 \log ^4(x)}{625 x^2+500 x^3+150 x^4+20 x^5+x^6+\left (500 x^2+400 x^3+100 x^4+8 x^5\right ) \log (x)+\left (150 x^2+100 x^3+18 x^4\right ) \log ^2(x)+\left (20 x^2+8 x^3\right ) \log ^3(x)+x^2 \log ^4(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-175-120 x-1254 x^3-1001 x^4-300 x^5-40 x^6-2 x^7-4 \left (15+10 x-2 x^2+250 x^3+200 x^4+50 x^5+4 x^6\right ) \log (x)-\left (5-x^2+300 x^3+200 x^4+36 x^5\right ) \log ^2(x)-8 x^3 (5+2 x) \log ^3(x)-2 x^3 \log ^4(x)}{x^2 \left ((5+x)^2+2 (5+2 x) \log (x)+\log ^2(x)\right )^2} \, dx\\ &=\int \left (-2 x-\frac {2 \left (5+x^2\right ) \left (5+7 x+x^2+\log (x)+2 x \log (x)\right )}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {-5+x^2}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )}\right ) \, dx\\ &=-x^2-2 \int \frac {\left (5+x^2\right ) \left (5+7 x+x^2+\log (x)+2 x \log (x)\right )}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+\int \frac {-5+x^2}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )} \, dx\\ &=-x^2-2 \int \left (\frac {5+7 x+x^2+\log (x)+2 x \log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {5 \left (5+7 x+x^2+\log (x)+2 x \log (x)\right )}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx+\int \left (\frac {1}{25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)}-\frac {5}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )}\right ) \, dx\\ &=-x^2-2 \int \frac {5+7 x+x^2+\log (x)+2 x \log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-5 \int \frac {1}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )} \, dx-10 \int \frac {5+7 x+x^2+\log (x)+2 x \log (x)}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+\int \frac {1}{25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ &=-x^2-2 \int \left (\frac {5}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {7 x}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {x^2}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {\log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {2 x \log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx-5 \int \frac {1}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )} \, dx-10 \int \left (\frac {1}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {5}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {7}{x \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {\log (x)}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}+\frac {2 \log (x)}{x \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2}\right ) \, dx+\int \frac {1}{25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ &=-x^2-2 \int \frac {x^2}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-2 \int \frac {\log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-4 \int \frac {x \log (x)}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-5 \int \frac {1}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )} \, dx-2 \left (10 \int \frac {1}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx\right )-10 \int \frac {\log (x)}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-14 \int \frac {x}{\left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-20 \int \frac {\log (x)}{x \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-50 \int \frac {1}{x^2 \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx-70 \int \frac {1}{x \left (25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)\right )^2} \, dx+\int \frac {1}{25+10 x+x^2+10 \log (x)+4 x \log (x)+\log ^2(x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 36, normalized size = 1.29 \begin {gather*} -x^2+\frac {5+x^2}{x \left ((5+x)^2+2 (5+2 x) \log (x)+\log ^2(x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 78, normalized size = 2.79 \begin {gather*} -\frac {x^{5} + x^{3} \log \relax (x)^{2} + 10 \, x^{4} + 25 \, x^{3} - x^{2} + 2 \, {\left (2 \, x^{4} + 5 \, x^{3}\right )} \log \relax (x) - 5}{x^{3} + x \log \relax (x)^{2} + 10 \, x^{2} + 2 \, {\left (2 \, x^{2} + 5 \, x\right )} \log \relax (x) + 25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.62, size = 44, normalized size = 1.57 \begin {gather*} -x^{2} + \frac {x^{2} + 5}{x^{3} + 4 \, x^{2} \log \relax (x) + x \log \relax (x)^{2} + 10 \, x^{2} + 10 \, x \log \relax (x) + 25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 39, normalized size = 1.39
method | result | size |
risch | \(-x^{2}+\frac {x^{2}+5}{x \left (\ln \relax (x )^{2}+4 x \ln \relax (x )+x^{2}+10 \ln \relax (x )+10 x +25\right )}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 78, normalized size = 2.79 \begin {gather*} -\frac {x^{5} + x^{3} \log \relax (x)^{2} + 10 \, x^{4} + 25 \, x^{3} - x^{2} + 2 \, {\left (2 \, x^{4} + 5 \, x^{3}\right )} \log \relax (x) - 5}{x^{3} + x \log \relax (x)^{2} + 10 \, x^{2} + 2 \, {\left (2 \, x^{2} + 5 \, x\right )} \log \relax (x) + 25 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {120\,x+{\ln \relax (x)}^3\,\left (16\,x^4+40\,x^3\right )+2\,x^3\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (16\,x^6+200\,x^5+800\,x^4+1000\,x^3-8\,x^2+40\,x+60\right )+1254\,x^3+1001\,x^4+300\,x^5+40\,x^6+2\,x^7+{\ln \relax (x)}^2\,\left (36\,x^5+200\,x^4+300\,x^3-x^2+5\right )+175}{{\ln \relax (x)}^3\,\left (8\,x^3+20\,x^2\right )+x^2\,{\ln \relax (x)}^4+\ln \relax (x)\,\left (8\,x^5+100\,x^4+400\,x^3+500\,x^2\right )+{\ln \relax (x)}^2\,\left (18\,x^4+100\,x^3+150\,x^2\right )+625\,x^2+500\,x^3+150\,x^4+20\,x^5+x^6} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 37, normalized size = 1.32 \begin {gather*} - x^{2} + \frac {x^{2} + 5}{x^{3} + 10 x^{2} + x \log {\relax (x )}^{2} + 25 x + \left (4 x^{2} + 10 x\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________