Optimal. Leaf size=26 \[ \frac {e^{-1-4 \left (-x^4+\frac {x}{4+x}\right )}}{3 x} \]
________________________________________________________________________________________
Rubi [F] time = 3.47, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (4-\frac {20+9 x-16 x^4-4 x^5+(4+x) \log (3 x)}{4+x}\right ) \left (-16-24 x-x^2+256 x^4+128 x^5+16 x^6\right )}{16 x+8 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (4-\frac {20+9 x-16 x^4-4 x^5+(4+x) \log (3 x)}{4+x}\right ) \left (-16-24 x-x^2+256 x^4+128 x^5+16 x^6\right )}{x \left (16+8 x+x^2\right )} \, dx\\ &=\int \frac {\exp \left (4-\frac {20+9 x-16 x^4-4 x^5+(4+x) \log (3 x)}{4+x}\right ) \left (-16-24 x-x^2+256 x^4+128 x^5+16 x^6\right )}{x (4+x)^2} \, dx\\ &=\int \frac {\exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right ) \left (-16-24 x-x^2+256 x^4+128 x^5+16 x^6\right )}{x (4+x)^2} \, dx\\ &=\int \left (-\frac {\exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right )}{x}+16 \exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right ) x^3-\frac {16 \exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right )}{(4+x)^2}\right ) \, dx\\ &=16 \int \exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right ) x^3 \, dx-16 \int \frac {\exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right )}{(4+x)^2} \, dx-\int \frac {\exp \left (\frac {-4-5 x+16 x^4+4 x^5-4 \log (3 x)-x \log (3 x)}{4+x}\right )}{x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 23, normalized size = 0.88 \begin {gather*} \frac {e^{-5+4 x^4+\frac {16}{4+x}}}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.96, size = 31, normalized size = 1.19 \begin {gather*} e^{\left (\frac {4 \, x^{5} + 16 \, x^{4} - {\left (x + 4\right )} \log \left (3 \, x\right ) - 5 \, x - 4}{x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.17, size = 60, normalized size = 2.31 \begin {gather*} e^{\left (\frac {4 \, x^{5}}{x + 4} + \frac {16 \, x^{4}}{x + 4} - \frac {x \log \left (3 \, x\right )}{x + 4} - \frac {5 \, x}{x + 4} - \frac {4 \, \log \left (3 \, x\right )}{x + 4} - \frac {4}{x + 4}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.10, size = 36, normalized size = 1.38
method | result | size |
risch | \({\mathrm e}^{-\frac {-4 x^{5}-16 x^{4}+x \ln \left (3 x \right )+4 \ln \left (3 x \right )+5 x +4}{4+x}}\) | \(36\) |
gosper | \({\mathrm e}^{4} {\mathrm e}^{-\frac {-4 x^{5}-16 x^{4}+x \ln \left (3 x \right )+4 \ln \left (3 x \right )+9 x +20}{4+x}}\) | \(42\) |
norman | \(\frac {\left (x \,{\mathrm e}^{4}+4 \,{\mathrm e}^{4}\right ) {\mathrm e}^{-\frac {\left (4+x \right ) \ln \left (3 x \right )-4 x^{5}-16 x^{4}+9 x +20}{4+x}}}{4+x}\) | \(52\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.75, size = 20, normalized size = 0.77 \begin {gather*} \frac {e^{\left (4 \, x^{4} + \frac {16}{x + 4} - 5\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 46, normalized size = 1.77 \begin {gather*} \frac {{\mathrm {e}}^4\,{\mathrm {e}}^{-\frac {9\,x}{x+4}}\,{\mathrm {e}}^{\frac {4\,x^5}{x+4}}\,{\mathrm {e}}^{\frac {16\,x^4}{x+4}}\,{\mathrm {e}}^{-\frac {20}{x+4}}}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.65, size = 31, normalized size = 1.19 \begin {gather*} e^{4} e^{- \frac {- 4 x^{5} - 16 x^{4} + 9 x + \left (x + 4\right ) \log {\left (3 x \right )} + 20}{x + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________