Optimal. Leaf size=21 \[ \log \left (\left (-1+3 x+256 x^2\right ) \left (-x^2+\log (\log (x))\right )\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.38, antiderivative size = 22, normalized size of antiderivative = 1.05, number of steps used = 5, number of rules used = 4, integrand size = 85, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.047, Rules used = {6741, 6728, 628, 6684} \begin {gather*} \log \left (-256 x^2-3 x+1\right )+\log \left (x^2-\log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 628
Rule 6684
Rule 6728
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1+3 x+256 x^2+\left (2 x^2-9 x^3-1024 x^4\right ) \log (x)+\left (3 x+512 x^2\right ) \log (x) \log (\log (x))}{x \left (1-3 x-256 x^2\right ) \log (x) \left (x^2-\log (\log (x))\right )} \, dx\\ &=\int \left (\frac {3+512 x}{-1+3 x+256 x^2}+\frac {-1+2 x^2 \log (x)}{x \log (x) \left (x^2-\log (\log (x))\right )}\right ) \, dx\\ &=\int \frac {3+512 x}{-1+3 x+256 x^2} \, dx+\int \frac {-1+2 x^2 \log (x)}{x \log (x) \left (x^2-\log (\log (x))\right )} \, dx\\ &=\log \left (1-3 x-256 x^2\right )+\log \left (x^2-\log (\log (x))\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 22, normalized size = 1.05 \begin {gather*} \log \left (1-3 x-256 x^2\right )+\log \left (x^2-\log (\log (x))\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 22, normalized size = 1.05 \begin {gather*} \log \left (256 \, x^{2} + 3 \, x - 1\right ) + \log \left (-x^{2} + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.19, size = 22, normalized size = 1.05 \begin {gather*} \log \left (256 \, x^{2} + 3 \, x - 1\right ) + \log \left (-x^{2} + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 1.10
method | result | size |
risch | \(\ln \left (256 x^{2}+3 x -1\right )+\ln \left (\ln \left (\ln \relax (x )\right )-x^{2}\right )\) | \(23\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.45, size = 22, normalized size = 1.05 \begin {gather*} \log \left (256 \, x^{2} + 3 \, x - 1\right ) + \log \left (-x^{2} + \log \left (\log \relax (x)\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.34, size = 22, normalized size = 1.05 \begin {gather*} \ln \left (\ln \left (\ln \relax (x)\right )-x^2\right )+\ln \left (256\,x^2+3\,x-1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.34, size = 20, normalized size = 0.95 \begin {gather*} \log {\left (- x^{2} + \log {\left (\log {\relax (x )} \right )} \right )} + \log {\left (256 x^{2} + 3 x - 1 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________