Optimal. Leaf size=24 \[ 5-e^9+e^x+x+\frac {\log \left (-e^x\right )}{5 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 18, normalized size of antiderivative = 0.75, number of steps used = 10, number of rules used = 6, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {12, 14, 2194, 43, 2168, 29} \begin {gather*} x+e^x+\frac {\log \left (-e^x\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 29
Rule 43
Rule 2168
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \frac {x+5 x^2+5 e^x x^2-\log \left (-e^x\right )}{x^2} \, dx\\ &=\frac {1}{5} \int \left (5 e^x+\frac {x+5 x^2-\log \left (-e^x\right )}{x^2}\right ) \, dx\\ &=\frac {1}{5} \int \frac {x+5 x^2-\log \left (-e^x\right )}{x^2} \, dx+\int e^x \, dx\\ &=e^x+\frac {1}{5} \int \left (\frac {1+5 x}{x}-\frac {\log \left (-e^x\right )}{x^2}\right ) \, dx\\ &=e^x+\frac {1}{5} \int \frac {1+5 x}{x} \, dx-\frac {1}{5} \int \frac {\log \left (-e^x\right )}{x^2} \, dx\\ &=e^x+\frac {\log \left (-e^x\right )}{5 x}+\frac {1}{5} \int \left (5+\frac {1}{x}\right ) \, dx-\frac {1}{5} \int \frac {1}{x} \, dx\\ &=e^x+x+\frac {\log \left (-e^x\right )}{5 x}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 18, normalized size = 0.75 \begin {gather*} e^x+x+\frac {\log \left (-e^x\right )}{5 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [C] time = 0.48, size = 19, normalized size = 0.79 \begin {gather*} \frac {i \, \pi + 5 \, x^{2} + 5 \, x e^{x}}{5 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 4, normalized size = 0.17 \begin {gather*} x + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 15, normalized size = 0.62
method | result | size |
default | \(x +\frac {\ln \left (-{\mathrm e}^{x}\right )}{5 x}+{\mathrm e}^{x}\) | \(15\) |
norman | \(\frac {{\mathrm e}^{x} x +x \ln \left (-{\mathrm e}^{x}\right )+\frac {\ln \left (-{\mathrm e}^{x}\right )}{5}}{x}\) | \(24\) |
risch | \(\frac {\ln \left ({\mathrm e}^{x}\right )}{5 x}+\frac {-2 i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{2}+2 i \pi \mathrm {csgn}\left (i {\mathrm e}^{x}\right )^{3}+2 i \pi +10 x^{2}+10 \,{\mathrm e}^{x} x}{10 x}\) | \(54\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.37, size = 14, normalized size = 0.58 \begin {gather*} x + \frac {\log \left (-e^{x}\right )}{5 \, x} + e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.18, size = 11, normalized size = 0.46 \begin {gather*} x+{\mathrm {e}}^x+\frac {\pi \,1{}\mathrm {i}}{5\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [C] time = 0.12, size = 10, normalized size = 0.42 \begin {gather*} x + e^{x} + \frac {i \pi }{5 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________