Optimal. Leaf size=21 \[ e^{-x} x^3 \log ^4\left (\frac {3}{x^2}+x^2\right ) \]
________________________________________________________________________________________
Rubi [F] time = 2.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-x} \left (\left (-24 x^2+8 x^6\right ) \log ^3\left (\frac {3+x^4}{x^2}\right )+\left (9 x^2-3 x^3+3 x^6-x^7\right ) \log ^4\left (\frac {3+x^4}{x^2}\right )\right )}{3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {8 e^{-x} x^2 \left (-3+x^4\right ) \log ^3\left (\frac {3+x^4}{x^2}\right )}{3+x^4}-e^{-x} (-3+x) x^2 \log ^4\left (\frac {3+x^4}{x^2}\right )\right ) \, dx\\ &=8 \int \frac {e^{-x} x^2 \left (-3+x^4\right ) \log ^3\left (\frac {3+x^4}{x^2}\right )}{3+x^4} \, dx-\int e^{-x} (-3+x) x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ &=8 \int \left (e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right )-\frac {6 e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right )}{3+x^4}\right ) \, dx-\int \left (-3 e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right )+e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right )\right ) \, dx\\ &=3 \int e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx+8 \int e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right ) \, dx-48 \int \frac {e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right )}{3+x^4} \, dx-\int e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ &=3 \int e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx+8 \int e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right ) \, dx-48 \int \left (-\frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \left (i \sqrt {3}-x^2\right )}+\frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \left (i \sqrt {3}+x^2\right )}\right ) \, dx-\int e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ &=3 \int e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx+8 \int e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right ) \, dx+24 \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{i \sqrt {3}-x^2} \, dx-24 \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{i \sqrt {3}+x^2} \, dx-\int e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ &=3 \int e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx+8 \int e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right ) \, dx+24 \int \left (-\frac {(-1)^{3/4} e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \sqrt [4]{3} \left (\sqrt [4]{-3}-x\right )}-\frac {(-1)^{3/4} e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \sqrt [4]{3} \left (\sqrt [4]{-3}+x\right )}\right ) \, dx-24 \int \left (-\frac {\sqrt [4]{-\frac {1}{3}} e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \left (-(-1)^{3/4} \sqrt [4]{3}-x\right )}-\frac {\sqrt [4]{-\frac {1}{3}} e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{2 \left (-(-1)^{3/4} \sqrt [4]{3}+x\right )}\right ) \, dx-\int e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ &=3 \int e^{-x} x^2 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx+8 \int e^{-x} x^2 \log ^3\left (\frac {3+x^4}{x^2}\right ) \, dx-\left (4 (-3)^{3/4}\right ) \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{\sqrt [4]{-3}-x} \, dx-\left (4 (-3)^{3/4}\right ) \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{\sqrt [4]{-3}+x} \, dx+\left (4 \sqrt [4]{-1} 3^{3/4}\right ) \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{-(-1)^{3/4} \sqrt [4]{3}-x} \, dx+\left (4 \sqrt [4]{-1} 3^{3/4}\right ) \int \frac {e^{-x} \log ^3\left (\frac {3+x^4}{x^2}\right )}{-(-1)^{3/4} \sqrt [4]{3}+x} \, dx-\int e^{-x} x^3 \log ^4\left (\frac {3+x^4}{x^2}\right ) \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.43, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {e^{-x} \left (\left (-24 x^2+8 x^6\right ) \log ^3\left (\frac {3+x^4}{x^2}\right )+\left (9 x^2-3 x^3+3 x^6-x^7\right ) \log ^4\left (\frac {3+x^4}{x^2}\right )\right )}{3+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 20, normalized size = 0.95 \begin {gather*} x^{3} e^{\left (-x\right )} \log \left (\frac {x^{4} + 3}{x^{2}}\right )^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 4.48, size = 20, normalized size = 0.95 \begin {gather*} x^{3} e^{\left (-x\right )} \log \left (\frac {x^{4} + 3}{x^{2}}\right )^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.93, size = 15428, normalized size = 734.67
method | result | size |
risch | \(\text {Expression too large to display}\) | \(15428\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.51, size = 89, normalized size = 4.24 \begin {gather*} x^{3} e^{\left (-x\right )} \log \left (x^{4} + 3\right )^{4} - 8 \, x^{3} e^{\left (-x\right )} \log \left (x^{4} + 3\right )^{3} \log \relax (x) + 24 \, x^{3} e^{\left (-x\right )} \log \left (x^{4} + 3\right )^{2} \log \relax (x)^{2} - 32 \, x^{3} e^{\left (-x\right )} \log \left (x^{4} + 3\right ) \log \relax (x)^{3} + 16 \, x^{3} e^{\left (-x\right )} \log \relax (x)^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.36, size = 20, normalized size = 0.95 \begin {gather*} x^3\,{\mathrm {e}}^{-x}\,{\ln \left (\frac {x^4+3}{x^2}\right )}^4 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________