Optimal. Leaf size=34 \[ e^{3/x}-x+e^{\frac {4+x}{\log (5)}} \left (4-e^3-x+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.73, antiderivative size = 95, normalized size of antiderivative = 2.79, number of steps used = 12, number of rules used = 8, integrand size = 158, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {6688, 2209, 2199, 2176, 2194, 2178, 2554, 12} \begin {gather*} -x+e^{3/x}+x \left (-e^{\frac {x}{\log (5)}+\frac {4}{\log (5)}}\right )+e^{\frac {x}{\log (5)}+\frac {4}{\log (5)}} \log (x)+\log (5) e^{\frac {x}{\log (5)}+\frac {4}{\log (5)}}+\left (4-125^{\frac {1}{\log (5)}}-\log (5)\right ) e^{\frac {x}{\log (5)}+\frac {4}{\log (5)}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2209
Rule 2554
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1-\frac {3 e^{3/x}}{x^2}-\frac {e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \left (x^2-x \left (4-125^{\frac {1}{\log (5)}}-\log (5)\right )-\log (5)\right )}{x \log (5)}+\frac {e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x)}{\log (5)}\right ) \, dx\\ &=-x-3 \int \frac {e^{3/x}}{x^2} \, dx-\frac {\int \frac {e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \left (x^2-x \left (4-125^{\frac {1}{\log (5)}}-\log (5)\right )-\log (5)\right )}{x} \, dx}{\log (5)}+\frac {\int e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x) \, dx}{\log (5)}\\ &=e^{3/x}-x+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x)-\frac {\int \frac {e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (5)}{x} \, dx}{\log (5)}-\frac {\int \left (e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} x-\frac {e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (5)}{x}+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \left (-4+125^{\frac {1}{\log (5)}}+\log (5)\right )\right ) \, dx}{\log (5)}\\ &=e^{3/x}-x+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x)-\frac {\int e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} x \, dx}{\log (5)}+\frac {\left (4-125^{\frac {1}{\log (5)}}-\log (5)\right ) \int e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \, dx}{\log (5)}\\ &=e^{3/x}-x-e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} x+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \left (4-125^{\frac {1}{\log (5)}}-\log (5)\right )+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x)+\int e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \, dx\\ &=e^{3/x}-x-e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} x+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \left (4-125^{\frac {1}{\log (5)}}-\log (5)\right )+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (5)+e^{\frac {4}{\log (5)}+\frac {x}{\log (5)}} \log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.29, size = 45, normalized size = 1.32 \begin {gather*} e^{3/x}-x-e^{\frac {4+x}{\log (5)}} \left (-4+125^{\frac {1}{\log (5)}}+x\right )+e^{\frac {4+x}{\log (5)}} \log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.87, size = 34, normalized size = 1.00 \begin {gather*} -x + e^{\left (\frac {\log \relax (5) \log \left (-x - e^{3} + \log \relax (x) + 4\right ) + x + 4}{\log \relax (5)}\right )} + e^{\frac {3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.23, size = 77, normalized size = 2.26 \begin {gather*} -x e^{\left (\frac {x}{\log \relax (5)} + \frac {4}{\log \relax (5)}\right )} + e^{\left (\frac {x}{\log \relax (5)} + \frac {4}{\log \relax (5)}\right )} \log \relax (x) - x - e^{\left (\frac {x}{\log \relax (5)} + \frac {4}{\log \relax (5)} + 3\right )} + 4 \, e^{\left (\frac {x}{\log \relax (5)} + \frac {4}{\log \relax (5)}\right )} + e^{\frac {3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.32, size = 32, normalized size = 0.94
method | result | size |
risch | \({\mathrm e}^{\frac {3}{x}}-x +\left (\ln \relax (x )+4-{\mathrm e}^{3}-x \right ) {\mathrm e}^{\frac {4+x}{\ln \relax (5)}}\) | \(32\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.48, size = 58, normalized size = 1.71 \begin {gather*} -{\left (x e^{\frac {4}{\log \relax (5)}} - e^{\frac {4}{\log \relax (5)}} \log \relax (x) - 4 \, e^{\frac {4}{\log \relax (5)}} + e^{\left (\frac {4}{\log \relax (5)} + 3\right )}\right )} e^{\frac {x}{\log \relax (5)}} - x + e^{\frac {3}{x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 6.60, size = 77, normalized size = 2.26 \begin {gather*} 4\,{\mathrm {e}}^{\frac {x}{\ln \relax (5)}+\frac {4}{\ln \relax (5)}}-x-{\mathrm {e}}^{\frac {x}{\ln \relax (5)}+\frac {4}{\ln \relax (5)}+3}+{\mathrm {e}}^{3/x}-x\,{\mathrm {e}}^{\frac {x}{\ln \relax (5)}+\frac {4}{\ln \relax (5)}}+{\mathrm {e}}^{\frac {x}{\ln \relax (5)}+\frac {4}{\ln \relax (5)}}\,\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 2.18, size = 29, normalized size = 0.85 \begin {gather*} - x + e^{\frac {3}{x}} + e^{\frac {x + \log {\relax (5 )} \log {\left (- x + \log {\relax (x )} - e^{3} + 4 \right )} + 4}{\log {\relax (5 )}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________