Optimal. Leaf size=26 \[ e^5-\frac {4 e^3 x}{3 (7-i \pi +x-\log (2))} \]
________________________________________________________________________________________
Rubi [A] time = 0.04, antiderivative size = 38, normalized size of antiderivative = 1.46, number of steps used = 5, number of rules used = 4, integrand size = 58, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.069, Rules used = {12, 1981, 27, 32} \begin {gather*} \frac {4 e^3 (\pi +i (7-\log (2)))}{3 (i x+\pi +i (7-\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 32
Rule 1981
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (\left (4 e^3 (7-i \pi -\log (2))\right ) \int \frac {1}{147+42 x+3 x^2+(-42-6 x) (i \pi +\log (2))+3 (i \pi +\log (2))^2} \, dx\right )\\ &=-\left (\left (4 e^3 (7-i \pi -\log (2))\right ) \int \frac {1}{3 x^2-3 (\pi +i (7-\log (2)))^2+6 x (7-i \pi -\log (2))} \, dx\right )\\ &=-\left (\left (4 e^3 (7-i \pi -\log (2))\right ) \int -\frac {1}{3 (7 i+\pi +i x-i \log (2))^2} \, dx\right )\\ &=\frac {1}{3} \left (4 e^3 (7-i \pi -\log (2))\right ) \int \frac {1}{(7 i+\pi +i x-i \log (2))^2} \, dx\\ &=\frac {4 e^3 (\pi +i (7-\log (2)))}{3 (\pi +i x+i (7-\log (2)))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 35, normalized size = 1.35 \begin {gather*} \frac {4 i e^3 (7-i \pi -\log (2))}{3 (\pi +i (7+x-\log (2)))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 31, normalized size = 1.19 \begin {gather*} -\frac {4 \, {\left ({\left (-i \, \pi + 7\right )} e^{3} - e^{3} \log \relax (2)\right )}}{3 i \, \pi - 3 \, x + 3 \, \log \relax (2) - 21} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \, {\left ({\left (i \, \pi + \log \relax (2)\right )} e^{3} - 7 \, e^{3}\right )}}{3 \, {\left (-i \, \pi + x - \log \relax (2) + 7\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.70, size = 32, normalized size = 1.23
method | result | size |
default | \(-\frac {4 \,{\mathrm e}^{3} \left (\ln \relax (2)+i \pi \right )-28 \,{\mathrm e}^{3}}{3 \left (-i \pi -\ln \relax (2)+x +7\right )}\) | \(32\) |
risch | \(\frac {4 \pi \,{\mathrm e}^{3}}{3 \left (-i \ln \relax (2)+i x +\pi +7 i\right )}-\frac {4 i {\mathrm e}^{3} \ln \relax (2)}{3 \left (-i \ln \relax (2)+i x +\pi +7 i\right )}+\frac {28 i {\mathrm e}^{3}}{3 \left (-i \ln \relax (2)+i x +\pi +7 i\right )}\) | \(64\) |
norman | \(\frac {\left (-\frac {4 i {\mathrm e}^{3} \pi }{3}-\frac {4 \,{\mathrm e}^{3} \ln \relax (2)}{3}+\frac {28 \,{\mathrm e}^{3}}{3}\right ) x +\frac {4 \,{\mathrm e}^{3} \pi ^{2}}{3}+\frac {4 \ln \relax (2)^{2} {\mathrm e}^{3}}{3}-\frac {56 \,{\mathrm e}^{3} \ln \relax (2)}{3}+\frac {196 \,{\mathrm e}^{3}}{3}}{\pi ^{2}+\ln \relax (2)^{2}-2 x \ln \relax (2)+x^{2}-14 \ln \relax (2)+14 x +49}\) | \(73\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.35, size = 28, normalized size = 1.08 \begin {gather*} -\frac {4 \, {\left ({\left (i \, \pi + \log \relax (2)\right )} e^{3} - 7 \, e^{3}\right )}}{3 \, {\left (-i \, \pi + x - \log \relax (2) + 7\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.55, size = 31, normalized size = 1.19 \begin {gather*} \frac {\frac {4\,{\mathrm {e}}^3\,\ln \relax (2)}{3}-\frac {28\,{\mathrm {e}}^3}{3}+\frac {\Pi \,{\mathrm {e}}^3\,4{}\mathrm {i}}{3}}{\ln \relax (2)-x-7+\Pi \,1{}\mathrm {i}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 36, normalized size = 1.38 \begin {gather*} \frac {- 4 e^{3} \log {\relax (2 )} + 28 e^{3} - 4 i \pi e^{3}}{3 x - 3 \log {\relax (2 )} + 21 - 3 i \pi } \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________