Optimal. Leaf size=36 \[ \frac {1-x}{-1+\frac {e^{\frac {1}{4} \left (-\frac {2}{3}-x\right )} (2-x+2 \log (x))}{x}} \]
________________________________________________________________________________________
Rubi [F] time = 6.70, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {4 e^{\frac {1}{6} (2+3 x)} x^2+e^{\frac {1}{12} (2+3 x)} \left (-6 x+x^2+x^3\right )+e^{\frac {1}{12} (2+3 x)} \left (8-14 x-2 x^2\right ) \log (x)}{16-16 x+4 x^2+4 e^{\frac {1}{6} (2+3 x)} x^2+e^{\frac {1}{12} (2+3 x)} \left (-16 x+8 x^2\right )+\left (32-16 x-16 e^{\frac {1}{12} (2+3 x)} x\right ) \log (x)+16 \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{\frac {1}{6}+\frac {x}{4}} \left (x \left (-6+x+4 e^{\frac {1}{6}+\frac {x}{4}} x+x^2\right )-2 \left (-4+7 x+x^2\right ) \log (x)\right )}{4 \left (2-x-e^{\frac {1}{6}+\frac {x}{4}} x+2 \log (x)\right )^2} \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} \left (x \left (-6+x+4 e^{\frac {1}{6}+\frac {x}{4}} x+x^2\right )-2 \left (-4+7 x+x^2\right ) \log (x)\right )}{\left (2-x-e^{\frac {1}{6}+\frac {x}{4}} x+2 \log (x)\right )^2} \, dx\\ &=\frac {1}{4} \int \left (\frac {4 e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)}+\frac {e^{\frac {1}{6}+\frac {x}{4}} (-1+x) \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}\right ) \, dx\\ &=\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} (-1+x) \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+\int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \, dx\\ &=\frac {1}{4} \int \left (-\frac {e^{\frac {1}{6}+\frac {x}{4}} \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}+\frac {e^{\frac {1}{6}+\frac {x}{4}} x \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}\right ) \, dx+\int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx\right )+\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x \left (-2 x+x^2-8 \log (x)-2 x \log (x)\right )}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+\int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \, dx\\ &=-\left (\frac {1}{4} \int \left (-\frac {2 e^{\frac {1}{6}+\frac {x}{4}} x}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}+\frac {e^{\frac {1}{6}+\frac {x}{4}} x^2}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}-\frac {8 e^{\frac {1}{6}+\frac {x}{4}} \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}-\frac {2 e^{\frac {1}{6}+\frac {x}{4}} x \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}\right ) \, dx\right )+\frac {1}{4} \int \left (-\frac {2 e^{\frac {1}{6}+\frac {x}{4}} x^2}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}+\frac {e^{\frac {1}{6}+\frac {x}{4}} x^3}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}-\frac {8 e^{\frac {1}{6}+\frac {x}{4}} x \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}-\frac {2 e^{\frac {1}{6}+\frac {x}{4}} x^2 \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2}\right ) \, dx+\int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \, dx\\ &=-\left (\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x^2}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx\right )+\frac {1}{4} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x^3}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx-\frac {1}{2} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x^2}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+\frac {1}{2} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx-\frac {1}{2} \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x^2 \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+2 \int \frac {e^{\frac {1}{6}+\frac {x}{4}} \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx-2 \int \frac {e^{\frac {1}{6}+\frac {x}{4}} x \log (x)}{\left (-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)\right )^2} \, dx+\int \frac {e^{\frac {1}{6}+\frac {x}{4}} x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 1.97, size = 38, normalized size = 1.06 \begin {gather*} \frac {e^{\frac {1}{6}+\frac {x}{4}} (-1+x) x}{-2+x+e^{\frac {1}{6}+\frac {x}{4}} x-2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.65, size = 31, normalized size = 0.86 \begin {gather*} \frac {{\left (x^{2} - x\right )} e^{\left (\frac {1}{4} \, x + \frac {1}{6}\right )}}{x e^{\left (\frac {1}{4} \, x + \frac {1}{6}\right )} + x - 2 \, \log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 35, normalized size = 0.97 \begin {gather*} \frac {x^{2} e^{\left (\frac {1}{4} \, x + \frac {1}{6}\right )} + x - 2 \, \log \relax (x) - 2}{x e^{\left (\frac {1}{4} \, x + \frac {1}{6}\right )} + x - 2 \, \log \relax (x) - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 29, normalized size = 0.81
method | result | size |
risch | \(\frac {\left (x -1\right ) {\mathrm e}^{\frac {x}{4}+\frac {1}{6}} x}{x \,{\mathrm e}^{\frac {x}{4}+\frac {1}{6}}+x -2 \ln \relax (x )-2}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.72, size = 39, normalized size = 1.08 \begin {gather*} -\frac {x\,{\mathrm {e}}^{\frac {x}{4}+\frac {1}{6}}-x^2\,{\mathrm {e}}^{\frac {x}{4}+\frac {1}{6}}}{x-2\,\ln \relax (x)+x\,{\mathrm {e}}^{\frac {x}{4}+\frac {1}{6}}-2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 39, normalized size = 1.08 \begin {gather*} x + \frac {- x^{2} + 2 x \log {\relax (x )} + 3 x - 2 \log {\relax (x )} - 2}{x e^{\frac {x}{4} + \frac {1}{6}} + x - 2 \log {\relax (x )} - 2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________