Optimal. Leaf size=26 \[ \frac {4 \left (3+\frac {1}{9} e^{6-x-\frac {1}{2} x (5+x)}\right )}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.74, antiderivative size = 45, normalized size of antiderivative = 1.73, number of steps used = 7, number of rules used = 5, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.082, Rules used = {12, 2274, 6688, 14, 2288} \begin {gather*} \frac {4 e^{-\frac {x^2}{2}-\frac {7 x}{2}+6} \left (2 x^2+7 x\right )}{9 x^2 (2 x+7)}+\frac {12}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2274
Rule 2288
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \frac {e^{\frac {1}{2} \left (12-7 x-x^2-2 \log (x)\right )} \left (-108 e^{\frac {1}{2} \left (-12+7 x+x^2+2 \log (x)\right )}-4 x-14 x^2-4 x^3\right )}{x^2} \, dx\\ &=\frac {1}{9} \int \frac {e^{\frac {1}{2} \left (12-7 x-x^2\right )} \left (-108 e^{\frac {1}{2} \left (-12+7 x+x^2+2 \log (x)\right )}-4 x-14 x^2-4 x^3\right )}{x^3} \, dx\\ &=\frac {1}{9} \int \frac {2 \left (-54-e^{6-\frac {1}{2} x (7+x)} \left (2+7 x+2 x^2\right )\right )}{x^2} \, dx\\ &=\frac {2}{9} \int \frac {-54-e^{6-\frac {1}{2} x (7+x)} \left (2+7 x+2 x^2\right )}{x^2} \, dx\\ &=\frac {2}{9} \int \left (-\frac {54}{x^2}+\frac {e^{6-\frac {7 x}{2}-\frac {x^2}{2}} \left (-2-7 x-2 x^2\right )}{x^2}\right ) \, dx\\ &=\frac {12}{x}+\frac {2}{9} \int \frac {e^{6-\frac {7 x}{2}-\frac {x^2}{2}} \left (-2-7 x-2 x^2\right )}{x^2} \, dx\\ &=\frac {12}{x}+\frac {4 e^{6-\frac {7 x}{2}-\frac {x^2}{2}} \left (7 x+2 x^2\right )}{9 x^2 (7+2 x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 21, normalized size = 0.81 \begin {gather*} \frac {4 \left (27+e^{6-\frac {1}{2} x (7+x)}\right )}{9 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.76, size = 37, normalized size = 1.42 \begin {gather*} \frac {4 \, {\left (x + 27 \, e^{\left (\frac {1}{2} \, x^{2} + \frac {7}{2} \, x + \log \relax (x) - 6\right )}\right )} e^{\left (-\frac {1}{2} \, x^{2} - \frac {7}{2} \, x - \log \relax (x) + 6\right )}}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 18, normalized size = 0.69 \begin {gather*} \frac {4 \, {\left (e^{\left (-\frac {1}{2} \, x^{2} - \frac {7}{2} \, x + 6\right )} + 27\right )}}{9 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 23, normalized size = 0.88
method | result | size |
risch | \(\frac {12}{x}+\frac {4 \,{\mathrm e}^{-\frac {1}{2} x^{2}-\frac {7}{2} x +6}}{9 x}\) | \(23\) |
default | \(\frac {12}{x}+\frac {4 \,{\mathrm e}^{-\frac {1}{2} x^{2}-\frac {7}{2} x +6}}{9 x}\) | \(24\) |
norman | \(\frac {\left (\frac {4 x}{9}+12 \,{\mathrm e}^{\ln \relax (x )+\frac {x^{2}}{2}+\frac {7 x}{2}-6}\right ) {\mathrm e}^{-\frac {1}{2} x^{2}-\frac {7}{2} x +6}}{x^{2}}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {2}{9} \, \sqrt {2} \sqrt {\pi } \operatorname {erf}\left (\frac {1}{2} \, \sqrt {2} x + \frac {7}{4} \, \sqrt {2}\right ) e^{\frac {97}{8}} + \frac {12}{x} - \frac {2}{9} \, \int \frac {{\left (7 \, x e^{6} + 2 \, e^{6}\right )} e^{\left (-\frac {1}{2} \, x^{2} - \frac {7}{2} \, x\right )}}{x^{2}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 5.43, size = 18, normalized size = 0.69 \begin {gather*} \frac {4\,\left ({\mathrm {e}}^{-\frac {x^2}{2}-\frac {7\,x}{2}+6}+27\right )}{9\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 20, normalized size = 0.77 \begin {gather*} \frac {4 e^{- \frac {x^{2}}{2} - \frac {7 x}{2} + 6}}{9 x} + \frac {12}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________